Modeling events and interactions through temporal processes: A survey

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Angelica Liguori , Luciano Caroprese , Marco Minici , Bruno Veloso , Francesco Spinnato , Mirco Nanni , Giuseppe Manco , João Gama
{"title":"Modeling events and interactions through temporal processes: A survey","authors":"Angelica Liguori ,&nbsp;Luciano Caroprese ,&nbsp;Marco Minici ,&nbsp;Bruno Veloso ,&nbsp;Francesco Spinnato ,&nbsp;Mirco Nanni ,&nbsp;Giuseppe Manco ,&nbsp;João Gama","doi":"10.1016/j.neucom.2025.131191","DOIUrl":null,"url":null,"abstract":"<div><div>In real-world scenarios, numerous phenomena generate a series of events that occur in continuous time. Point processes provide a natural mathematical framework for modeling these event sequences. In this comprehensive survey, we aim to explore probabilistic models that capture the dynamics of event sequences through temporal processes. We revise the notion of event modeling and provide the mathematical foundations that underpin the existing literature on this topic. To structure our survey effectively, we introduce an ontology that categorizes the existing approaches considering three horizontal axes: <em>modeling</em>, <em>inference and estimation</em>, and <em>application</em>. We conduct a systematic review of the existing approaches, with a particular focus on those leveraging deep learning techniques. Finally, we delve into the practical applications where these proposed techniques can be harnessed to address real-world problems related to event modeling. Additionally, we provide a selection of benchmark datasets that can be employed to validate the approaches for point processes.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"653 ","pages":"Article 131191"},"PeriodicalIF":6.5000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225018636","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In real-world scenarios, numerous phenomena generate a series of events that occur in continuous time. Point processes provide a natural mathematical framework for modeling these event sequences. In this comprehensive survey, we aim to explore probabilistic models that capture the dynamics of event sequences through temporal processes. We revise the notion of event modeling and provide the mathematical foundations that underpin the existing literature on this topic. To structure our survey effectively, we introduce an ontology that categorizes the existing approaches considering three horizontal axes: modeling, inference and estimation, and application. We conduct a systematic review of the existing approaches, with a particular focus on those leveraging deep learning techniques. Finally, we delve into the practical applications where these proposed techniques can be harnessed to address real-world problems related to event modeling. Additionally, we provide a selection of benchmark datasets that can be employed to validate the approaches for point processes.
通过时间过程建模事件和交互:综述
在现实世界中,许多现象会产生一系列连续时间内发生的事件。点过程为这些事件序列的建模提供了一个自然的数学框架。在这个全面的调查中,我们的目标是探索概率模型,通过时间过程捕捉事件序列的动态。我们修改了事件建模的概念,并提供了支撑该主题现有文献的数学基础。为了有效地构建我们的调查,我们引入了一个本体,该本体考虑三个水平轴对现有方法进行分类:建模、推理和估计以及应用。我们对现有的方法进行了系统的回顾,特别关注那些利用深度学习技术的方法。最后,我们将深入研究实际应用程序,在这些应用程序中,可以利用这些建议的技术来解决与事件建模相关的实际问题。此外,我们提供了一系列基准数据集,可用于验证点处理的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信