Coexistence of Multiple Topological Phases and High-Order Topology in 2D V2CS2, Cr2CS2, and Mn2CS2

IF 2.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Jie Du, Guilin Lu, Tao Zhu, Yong Jiang, Wenhong Wang
{"title":"Coexistence of Multiple Topological Phases and High-Order Topology in 2D V2CS2, Cr2CS2, and Mn2CS2","authors":"Jie Du,&nbsp;Guilin Lu,&nbsp;Tao Zhu,&nbsp;Yong Jiang,&nbsp;Wenhong Wang","doi":"10.1002/andp.202400413","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the topological properties of 2D <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>V</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>CS</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm V}_2{\\rm CS}_2$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Cr</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>CS</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Cr}_2{\\rm CS}_2$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Mn</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>CS</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Mn}_2{\\rm CS}_2$</annotation>\n </semantics></math> using first-principles calculations. The rare coexistence of different topological fermion types is uncovered within single materials: <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>V</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>CS</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm V}_2{\\rm CS}_2$</annotation>\n </semantics></math> hosts both type-I and type-II Dirac points, while the spin-down channel of ferromagnetic <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Cr</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>CS</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Cr}_2{\\rm CS}_2$</annotation>\n </semantics></math> exhibits both type-I and type-II Weyl points. In contrast, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Mn</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>CS</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Mn}_2{\\rm CS}_2$</annotation>\n </semantics></math> is identified as an antiferromagnetic insulator (gap <span></span><math>\n <semantics>\n <mo>∼</mo>\n <annotation>$\\sim$</annotation>\n </semantics></math>375 meV), and the spin-up channel of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Cr</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>CS</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Cr}_2{\\rm CS}_2$</annotation>\n </semantics></math> is insulating (gap <span></span><math>\n <semantics>\n <mo>∼</mo>\n <annotation>$\\sim$</annotation>\n </semantics></math>28 meV). We demonstrate that biaxial strain can tune the fermion topology, transforming type-II into type-III fermions, while type-I fermions remain robust. Spin-orbit coupling (SOC) induces gaps at type-I points (<span></span><math>\n <semantics>\n <mo>∼</mo>\n <annotation>$\\sim$</annotation>\n </semantics></math>20-24 meV) but leaves type-II fermions gapless, indicating their robustness against SOC. Furthermore, the spin-up channel of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Cr</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>CS</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Cr}_2{\\rm CS}_2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Mn</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>CS</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Mn}_2{\\rm CS}_2$</annotation>\n </semantics></math> is identified as magnetic high-order topological insulators (HOTIs). This is confirmed by calculations of quantized fractional corner charges (e/3) protected by <span></span><math>\n <semantics>\n <msub>\n <mi>C</mi>\n <mn>3</mn>\n </msub>\n <annotation>${\\rm C}_3$</annotation>\n </semantics></math> symmetry and the identification of topological corner states using tight-binding models. These findings reveal a rich topological landscape in these materials, offering potential for fundamental research and applications in spintronics and quantum computing.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 8","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400413","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the topological properties of 2D V 2 CS 2 ${\rm V}_2{\rm CS}_2$ , Cr 2 CS 2 ${\rm Cr}_2{\rm CS}_2$ , and Mn 2 CS 2 ${\rm Mn}_2{\rm CS}_2$ using first-principles calculations. The rare coexistence of different topological fermion types is uncovered within single materials: V 2 CS 2 ${\rm V}_2{\rm CS}_2$ hosts both type-I and type-II Dirac points, while the spin-down channel of ferromagnetic Cr 2 CS 2 ${\rm Cr}_2{\rm CS}_2$ exhibits both type-I and type-II Weyl points. In contrast, Mn 2 CS 2 ${\rm Mn}_2{\rm CS}_2$ is identified as an antiferromagnetic insulator (gap $\sim$ 375 meV), and the spin-up channel of Cr 2 CS 2 ${\rm Cr}_2{\rm CS}_2$ is insulating (gap $\sim$ 28 meV). We demonstrate that biaxial strain can tune the fermion topology, transforming type-II into type-III fermions, while type-I fermions remain robust. Spin-orbit coupling (SOC) induces gaps at type-I points ( $\sim$ 20-24 meV) but leaves type-II fermions gapless, indicating their robustness against SOC. Furthermore, the spin-up channel of Cr 2 CS 2 ${\rm Cr}_2{\rm CS}_2$ and Mn 2 CS 2 ${\rm Mn}_2{\rm CS}_2$ is identified as magnetic high-order topological insulators (HOTIs). This is confirmed by calculations of quantized fractional corner charges (e/3) protected by C 3 ${\rm C}_3$ symmetry and the identification of topological corner states using tight-binding models. These findings reveal a rich topological landscape in these materials, offering potential for fundamental research and applications in spintronics and quantum computing.

Abstract Image

二维V2CS2、Cr2CS2和Mn2CS2中多拓扑相和高阶拓扑共存的研究
本文研究了二维V 2 CS 2$ {\rm V}_2{\rm CS}_2$的拓扑性质,Cr 2 CS 2$ {\rm Cr}_2{\rm CS}_2$,和Mn 2 CS 2$ {\rm Mn}_2{\rm CS}_2$使用第一性原理计算。揭示了不同拓扑费米子类型在单一材料中的罕见共存:V 2 CS 2$ {\rm V}_2{\rm CS}_2$包含i型和ii型狄拉克点,而铁磁Cr 2 CS 2$ {\rm Cr}_2{\rm CS}_2$的自旋下通道同时具有i型和ii型Weyl点。相反,Mn 2 CS 2$ {\rm Mn}_2{\rm CS}_2$被确定为反铁磁绝缘体(gap ~ $\sim$ 375 meV)。Cr 2 CS 2$ {\rm Cr}_2{\rm CS}_2$的自旋向上通道是绝缘的(gap ~ $\sim$ 28 meV)。我们证明了双轴应变可以调整费米子拓扑结构,将ii型费米子转变为iii型费米子,而i型费米子仍然保持鲁棒性。自旋轨道耦合(SOC)在i型点(20- 24mev)产生间隙,但ii型费米子没有间隙,表明它们对SOC的鲁棒性。此外,cr2cs2 ${\rm Cr}_2{\rm CS}_2$和mn2cs2的自旋向上通道${\rm Mn}_2{\rm CS}_2$被确定为磁性高阶拓扑绝缘子(HOTIs)。通过计算由C 3$ {\rm C}_3$对称保护的量子化分数角电荷(e/3)和使用紧密结合模型识别拓扑角态,证实了这一点。这些发现揭示了这些材料丰富的拓扑景观,为自旋电子学和量子计算的基础研究和应用提供了潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annalen der Physik
Annalen der Physik 物理-物理:综合
CiteScore
4.50
自引率
8.30%
发文量
202
审稿时长
3 months
期刊介绍: Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信