Jie Du, Guilin Lu, Tao Zhu, Yong Jiang, Wenhong Wang
{"title":"Coexistence of Multiple Topological Phases and High-Order Topology in 2D V2CS2, Cr2CS2, and Mn2CS2","authors":"Jie Du, Guilin Lu, Tao Zhu, Yong Jiang, Wenhong Wang","doi":"10.1002/andp.202400413","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the topological properties of 2D <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>V</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>CS</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm V}_2{\\rm CS}_2$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Cr</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>CS</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Cr}_2{\\rm CS}_2$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Mn</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>CS</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Mn}_2{\\rm CS}_2$</annotation>\n </semantics></math> using first-principles calculations. The rare coexistence of different topological fermion types is uncovered within single materials: <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>V</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>CS</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm V}_2{\\rm CS}_2$</annotation>\n </semantics></math> hosts both type-I and type-II Dirac points, while the spin-down channel of ferromagnetic <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Cr</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>CS</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Cr}_2{\\rm CS}_2$</annotation>\n </semantics></math> exhibits both type-I and type-II Weyl points. In contrast, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Mn</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>CS</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Mn}_2{\\rm CS}_2$</annotation>\n </semantics></math> is identified as an antiferromagnetic insulator (gap <span></span><math>\n <semantics>\n <mo>∼</mo>\n <annotation>$\\sim$</annotation>\n </semantics></math>375 meV), and the spin-up channel of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Cr</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>CS</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Cr}_2{\\rm CS}_2$</annotation>\n </semantics></math> is insulating (gap <span></span><math>\n <semantics>\n <mo>∼</mo>\n <annotation>$\\sim$</annotation>\n </semantics></math>28 meV). We demonstrate that biaxial strain can tune the fermion topology, transforming type-II into type-III fermions, while type-I fermions remain robust. Spin-orbit coupling (SOC) induces gaps at type-I points (<span></span><math>\n <semantics>\n <mo>∼</mo>\n <annotation>$\\sim$</annotation>\n </semantics></math>20-24 meV) but leaves type-II fermions gapless, indicating their robustness against SOC. Furthermore, the spin-up channel of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Cr</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>CS</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Cr}_2{\\rm CS}_2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Mn</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>CS</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Mn}_2{\\rm CS}_2$</annotation>\n </semantics></math> is identified as magnetic high-order topological insulators (HOTIs). This is confirmed by calculations of quantized fractional corner charges (e/3) protected by <span></span><math>\n <semantics>\n <msub>\n <mi>C</mi>\n <mn>3</mn>\n </msub>\n <annotation>${\\rm C}_3$</annotation>\n </semantics></math> symmetry and the identification of topological corner states using tight-binding models. These findings reveal a rich topological landscape in these materials, offering potential for fundamental research and applications in spintronics and quantum computing.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 8","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400413","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the topological properties of 2D , , and using first-principles calculations. The rare coexistence of different topological fermion types is uncovered within single materials: hosts both type-I and type-II Dirac points, while the spin-down channel of ferromagnetic exhibits both type-I and type-II Weyl points. In contrast, is identified as an antiferromagnetic insulator (gap 375 meV), and the spin-up channel of is insulating (gap 28 meV). We demonstrate that biaxial strain can tune the fermion topology, transforming type-II into type-III fermions, while type-I fermions remain robust. Spin-orbit coupling (SOC) induces gaps at type-I points (20-24 meV) but leaves type-II fermions gapless, indicating their robustness against SOC. Furthermore, the spin-up channel of and is identified as magnetic high-order topological insulators (HOTIs). This is confirmed by calculations of quantized fractional corner charges (e/3) protected by symmetry and the identification of topological corner states using tight-binding models. These findings reveal a rich topological landscape in these materials, offering potential for fundamental research and applications in spintronics and quantum computing.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.