High-Resolution WRF-LES-Chem Simulations to Investigate Ozone Formation Regimes in Houston

Akinleye Folorunsho, Jimy Dudhia, John Sullivan, Paul Walter, James Flynn, Travis Griggs, Rebecca Sheesley, Sascha Usenko, Guillaume Gronoff, Mark Estes and Yang Li*, 
{"title":"High-Resolution WRF-LES-Chem Simulations to Investigate Ozone Formation Regimes in Houston","authors":"Akinleye Folorunsho,&nbsp;Jimy Dudhia,&nbsp;John Sullivan,&nbsp;Paul Walter,&nbsp;James Flynn,&nbsp;Travis Griggs,&nbsp;Rebecca Sheesley,&nbsp;Sascha Usenko,&nbsp;Guillaume Gronoff,&nbsp;Mark Estes and Yang Li*,&nbsp;","doi":"10.1021/acsestair.5c00109","DOIUrl":null,"url":null,"abstract":"<p >Despite decades of ongoing mitigation efforts, ozone (O<sub>3</sub>) levels remain persistently high in Houston, TX. For a high O<sub>3</sub> episode observed during the NASA Tracking Aerosol Convection Interactions ExpeRiment-Air Quality (TRACER-AQ) campaign, we use a high-resolution large-eddy simulation (LES) within the Weather Research and Forecasting model coupled with Chemistry (WRF-LES-Chem) to investigate temporal and spatial variations in O<sub>3</sub> formation regimes over the region. By leveraging improved simulations of O<sub>3</sub> and its precursors by LES, compared to the mesoscale WRF model, we derive and compare two O<sub>3</sub> sensitivity indicators: the formaldehyde-to-nitrogen dioxide ratio (FNR) and the ratio of radical loss via NO<sub>X</sub> reactions to total primary radical production (L<sub>N</sub>/Q). Specifically, we use L<sub>N</sub>/Q to inform the threshold for FNR, the latter being a more commonly used and accessible indicator, although it is subject to significant uncertainties. We demonstrate that O<sub>3</sub> production in the Houston urban area transitions from a nearly homogeneous early morning VOC-limited regime to a NO<sub>X</sub>-limited regime by midday. Using the L<sub>N</sub>/Q indicator, we identify that a range of 0.6 &lt; FNR &lt; 1.8 falls in the transition zone of O<sub>3</sub> formation regime. The high-resolution modeling of O<sub>3</sub> formation and the FNR range developed in this LES study offers valuable insight for assessing future air quality and improving the understanding of atmospheric chemistry that underpins pollution control in Houston.</p>","PeriodicalId":100014,"journal":{"name":"ACS ES&T Air","volume":"2 8","pages":"1668–1683"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T Air","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestair.5c00109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite decades of ongoing mitigation efforts, ozone (O3) levels remain persistently high in Houston, TX. For a high O3 episode observed during the NASA Tracking Aerosol Convection Interactions ExpeRiment-Air Quality (TRACER-AQ) campaign, we use a high-resolution large-eddy simulation (LES) within the Weather Research and Forecasting model coupled with Chemistry (WRF-LES-Chem) to investigate temporal and spatial variations in O3 formation regimes over the region. By leveraging improved simulations of O3 and its precursors by LES, compared to the mesoscale WRF model, we derive and compare two O3 sensitivity indicators: the formaldehyde-to-nitrogen dioxide ratio (FNR) and the ratio of radical loss via NOX reactions to total primary radical production (LN/Q). Specifically, we use LN/Q to inform the threshold for FNR, the latter being a more commonly used and accessible indicator, although it is subject to significant uncertainties. We demonstrate that O3 production in the Houston urban area transitions from a nearly homogeneous early morning VOC-limited regime to a NOX-limited regime by midday. Using the LN/Q indicator, we identify that a range of 0.6 < FNR < 1.8 falls in the transition zone of O3 formation regime. The high-resolution modeling of O3 formation and the FNR range developed in this LES study offers valuable insight for assessing future air quality and improving the understanding of atmospheric chemistry that underpins pollution control in Houston.

Abstract Image

高分辨率WRF-LES-Chem模拟研究休斯顿臭氧形成机制
尽管几十年来一直在进行减缓努力,但德克萨斯州休斯顿的臭氧(O3)水平仍然居高不下。对于在美国宇航局跟踪气溶胶对流相互作用实验-空气质量(TRACER-AQ)活动中观测到的高臭氧事件,我们使用天气研究和预报模型中的高分辨率大涡模拟(LES)与化学(WRF-LES-Chem)相结合来研究该地区O3形成机制的时空变化。与中尺度WRF模型相比,通过利用LES改进的O3及其前体模拟,我们得出并比较了两个O3敏感性指标:甲醛与二氧化氮的比率(FNR)和NOX反应导致的自由基损失与总初级自由基产生的比率(LN/Q)。具体来说,我们使用LN/Q来通知FNR的阈值,后者是更常用和更容易获得的指标,尽管它受到重大不确定性的影响。研究表明,休斯顿市区的臭氧产量从清晨几乎均匀的voc限制状态过渡到中午的nox限制状态。使用LN/Q指标,我们确定0.6 <的范围;FNR & lt;1.8落在O3地层过渡带;在这项LES研究中开发的臭氧形成和FNR范围的高分辨率模型为评估未来的空气质量和提高对大气化学的理解提供了有价值的见解,这是休斯敦污染控制的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信