Molecular Evidence of the Promotion of Refractory Dissolved Organic Matter through Anthropogenic DOM Inputs to the Fen River, China

IF 4.3 Q1 ENVIRONMENTAL SCIENCES
Chen Gong, Shouliang Huo*, Jingtian Zhang, Hanxiao Zhang and Nanyan Weng, 
{"title":"Molecular Evidence of the Promotion of Refractory Dissolved Organic Matter through Anthropogenic DOM Inputs to the Fen River, China","authors":"Chen Gong,&nbsp;Shouliang Huo*,&nbsp;Jingtian Zhang,&nbsp;Hanxiao Zhang and Nanyan Weng,&nbsp;","doi":"10.1021/acsestwater.5c00465","DOIUrl":null,"url":null,"abstract":"<p >Dissolved organic matter (DOM) represents a critical nexus in the global carbon cycle, with rivers acting as pivotal reservoirs and transporters of terrestrially derived carbon. Anthropogenic nitrogen (N) and sulfur (S) inputs complicate DOM dynamics, altering its bioavailability and persistence, yet the molecular drivers of refractory DOM (RDOM) formation in human-altered river systems remain unresolved. Here, we integrate Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), <sup>13</sup>C stable isotope analysis (δ<sup>13</sup>C<sub>DOC</sub>) analysis, and advanced optical characterization to unravel DOM sources and RDOM transformation pathways in the anthropogenically stressed Fen River basin. Longitudinal analyses revealed increasing dissolved organic carbon (DOC) concentrations (2.18–10.37 mg/L), RDOC concentrations (0.07–7.43 mg/L) and S-containing DOM contributions (64.9 ± 4.1% to 69.6 ± 10.1%) along the river continuum, tightly coupled with sewage-derived inputs. S-enriched CHOS compounds emerged as robust molecular markers of RDOM production, dominated by aliphatic structures, hydrophobic units (HUs), and humic acids (HAs). This study deciphers the molecular architecture of DOM persistence in human-impacted rivers, identifying CHOS as both tracers and enablers of RDOM formation. By linking sewage inputs to S-mediated DOM stabilization, these findings provide actionable insights for mitigating legacy organic pollution in freshwater ecosystems under intensifying anthropogenic and climatic pressure.</p>","PeriodicalId":93847,"journal":{"name":"ACS ES&T water","volume":"5 8","pages":"4794–4806"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T water","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestwater.5c00465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Dissolved organic matter (DOM) represents a critical nexus in the global carbon cycle, with rivers acting as pivotal reservoirs and transporters of terrestrially derived carbon. Anthropogenic nitrogen (N) and sulfur (S) inputs complicate DOM dynamics, altering its bioavailability and persistence, yet the molecular drivers of refractory DOM (RDOM) formation in human-altered river systems remain unresolved. Here, we integrate Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), 13C stable isotope analysis (δ13CDOC) analysis, and advanced optical characterization to unravel DOM sources and RDOM transformation pathways in the anthropogenically stressed Fen River basin. Longitudinal analyses revealed increasing dissolved organic carbon (DOC) concentrations (2.18–10.37 mg/L), RDOC concentrations (0.07–7.43 mg/L) and S-containing DOM contributions (64.9 ± 4.1% to 69.6 ± 10.1%) along the river continuum, tightly coupled with sewage-derived inputs. S-enriched CHOS compounds emerged as robust molecular markers of RDOM production, dominated by aliphatic structures, hydrophobic units (HUs), and humic acids (HAs). This study deciphers the molecular architecture of DOM persistence in human-impacted rivers, identifying CHOS as both tracers and enablers of RDOM formation. By linking sewage inputs to S-mediated DOM stabilization, these findings provide actionable insights for mitigating legacy organic pollution in freshwater ecosystems under intensifying anthropogenic and climatic pressure.

Abstract Image

人为DOM输入促进汾河难溶有机质的分子证据
溶解有机物(DOM)是全球碳循环的一个关键环节,河流是陆地碳的关键储存库和运输工具。人为氮(N)和硫(S)的输入使DOM动力学复杂化,改变了其生物利用度和持久性,但在人为改变的河流系统中,难降解DOM (RDOM)形成的分子驱动因素仍未得到解决。本文采用傅里叶变换离子回旋共振质谱(FT-ICR MS)、13C稳定同位素分析(δ13CDOC)和先进的光学表征相结合的方法,揭示了汾河流域人为胁迫下的DOM来源和RDOM转化途径。纵向分析显示,溶解有机碳(DOC)浓度(2.18-10.37 mg/L)、RDOC浓度(0.07-7.43 mg/L)和含s DOM浓度(64.9±4.1%至69.6±10.1%)沿河流连续体增加,与污水来源的输入密切相关。富含s的CHOS化合物是RDOM生成的强大分子标记,主要由脂肪族结构、疏水单元(HUs)和腐植酸(HAs)组成。本研究破译了受人类影响的河流中DOM持久性的分子结构,确定了CHOS既是RDOM形成的示踪剂又是推动者。通过将污水输入与s介导的DOM稳定联系起来,这些发现为减轻日益加剧的人为和气候压力下淡水生态系统中的遗留有机污染提供了可行的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信