A Multidimensional Machine Learning-Based Approach to Optimization of Ternary Nanoalloy Catalysts for Oxygen Reduction Reaction

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Jessica Tao, Dong Dinh, Dominic Caracciolo, Zhi-Peng Wu, Zeqi Li, Susan Lu and Chuan-Jian Zhong*, 
{"title":"A Multidimensional Machine Learning-Based Approach to Optimization of Ternary Nanoalloy Catalysts for Oxygen Reduction Reaction","authors":"Jessica Tao,&nbsp;Dong Dinh,&nbsp;Dominic Caracciolo,&nbsp;Zhi-Peng Wu,&nbsp;Zeqi Li,&nbsp;Susan Lu and Chuan-Jian Zhong*,&nbsp;","doi":"10.1021/acs.jpcc.5c03763","DOIUrl":null,"url":null,"abstract":"<p >The arduous process of designing the optimal Pt-based alloy catalyst poses a great barrier to the mass commercialization of hydrogen fuel cells. Given the vast possibilities of metal combinations and their intricate interactions, the trial-and-error experimental search for the optimal catalyst is practically unfeasible. A major challenge lies in understanding the multimetallic alloy catalysts’ dynamic atomic structure and metal composition under oxygen reduction reaction conditions. We report herein a multidimensional machine learning-based approach to the analysis and optimization of ternary nanoalloy catalysts. The effectiveness of this approach is demonstrated through assessing the relationships between chemical composition, lattice structure, and catalytic performance of the alloy catalysts, which provides a data-driven framework and insight for understanding the dynamic nature of the alloy catalysts. Despite the complex, dynamic, and evolving nature of Pt-based alloy catalysts under the reaction conditions, the results provide some important insights into potential pathways to achieving the optimization of such ternary alloy catalysts. Moreover, the proposed data-driven approach is versatile and can readily be extended to discovery and development of other alloy catalysts, including high-entropy alloy catalysts.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 30","pages":"13627–13637"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c03763","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The arduous process of designing the optimal Pt-based alloy catalyst poses a great barrier to the mass commercialization of hydrogen fuel cells. Given the vast possibilities of metal combinations and their intricate interactions, the trial-and-error experimental search for the optimal catalyst is practically unfeasible. A major challenge lies in understanding the multimetallic alloy catalysts’ dynamic atomic structure and metal composition under oxygen reduction reaction conditions. We report herein a multidimensional machine learning-based approach to the analysis and optimization of ternary nanoalloy catalysts. The effectiveness of this approach is demonstrated through assessing the relationships between chemical composition, lattice structure, and catalytic performance of the alloy catalysts, which provides a data-driven framework and insight for understanding the dynamic nature of the alloy catalysts. Despite the complex, dynamic, and evolving nature of Pt-based alloy catalysts under the reaction conditions, the results provide some important insights into potential pathways to achieving the optimization of such ternary alloy catalysts. Moreover, the proposed data-driven approach is versatile and can readily be extended to discovery and development of other alloy catalysts, including high-entropy alloy catalysts.

Abstract Image

基于多维机器学习的三元纳米合金氧还原催化剂优化方法
设计最佳pt基合金催化剂的艰巨过程是氢燃料电池大规模商业化的一大障碍。考虑到金属组合的巨大可能性及其复杂的相互作用,通过反复试验寻找最佳催化剂实际上是不可行的。了解多金属合金催化剂在氧还原反应条件下的动态原子结构和金属组成是一个主要的挑战。本文报道了一种基于多维机器学习的方法来分析和优化三元纳米合金催化剂。通过评估合金催化剂的化学成分、晶格结构和催化性能之间的关系,证明了这种方法的有效性,为理解合金催化剂的动态性质提供了数据驱动的框架和见解。尽管pt基合金催化剂在反应条件下具有复杂、动态和不断发展的性质,但研究结果为实现这类三元合金催化剂的优化提供了一些重要的潜在途径。此外,所提出的数据驱动方法是通用的,可以很容易地扩展到发现和开发其他合金催化剂,包括高熵合金催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信