Disentangling Energy Transfer Pathways in Donor–Acceptor Dyads: A Molecular-Level Perspective for TADF OLED Applications

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Nikhitha R,  and , Anirban Mondal*, 
{"title":"Disentangling Energy Transfer Pathways in Donor–Acceptor Dyads: A Molecular-Level Perspective for TADF OLED Applications","authors":"Nikhitha R,&nbsp; and ,&nbsp;Anirban Mondal*,&nbsp;","doi":"10.1021/acsaem.5c01620","DOIUrl":null,"url":null,"abstract":"<p >A comprehensive understanding of the nonradiative energy transfer process is critical for advancing emitter design in organic light-emitting diodes (OLEDs). This study employs a multiscale computational approach integrating classical molecular dynamics, quantum chemical calculations, and kinetic Monte Carlo simulations to investigate a multiresonant (MR) emitter dyad (Cy-tmCPBN) in pure and doped film morphologies. Our results show that film morphology and molecular orientation critically influence energy transfer efficiency. In the pure film, tight molecular packing and favorable donor–acceptor alignment promote efficient intermolecular energy transfer. In contrast, doping with a donor host (Cy-tmCP)─which incorporates the same donor fragment as Cy-tmCPBN─introduces spatial dilution and disrupts molecular alignment, yielding reduced resonance energy transfer rates. Quantum mechanical analyses based on interfragment charge transfer and noncovalent interaction frameworks reveal that while the excitations are predominantly localized, weak yet non-negligible intermolecular electronic coupling in the pure film facilitates the observed energy transfer. These findings underscore the importance of tuning molecular organization and structural rigidity to control exciton behavior and optimize energy transfer in OLED emitter layers, aligning with ongoing efforts to improve device performance through rational molecular design.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 14","pages":"10743–10754"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c01620","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A comprehensive understanding of the nonradiative energy transfer process is critical for advancing emitter design in organic light-emitting diodes (OLEDs). This study employs a multiscale computational approach integrating classical molecular dynamics, quantum chemical calculations, and kinetic Monte Carlo simulations to investigate a multiresonant (MR) emitter dyad (Cy-tmCPBN) in pure and doped film morphologies. Our results show that film morphology and molecular orientation critically influence energy transfer efficiency. In the pure film, tight molecular packing and favorable donor–acceptor alignment promote efficient intermolecular energy transfer. In contrast, doping with a donor host (Cy-tmCP)─which incorporates the same donor fragment as Cy-tmCPBN─introduces spatial dilution and disrupts molecular alignment, yielding reduced resonance energy transfer rates. Quantum mechanical analyses based on interfragment charge transfer and noncovalent interaction frameworks reveal that while the excitations are predominantly localized, weak yet non-negligible intermolecular electronic coupling in the pure film facilitates the observed energy transfer. These findings underscore the importance of tuning molecular organization and structural rigidity to control exciton behavior and optimize energy transfer in OLED emitter layers, aligning with ongoing efforts to improve device performance through rational molecular design.

Abstract Image

在供体-受体二元体中解缠能量转移途径:TADF OLED应用的分子水平视角
全面了解非辐射能量传递过程对于推进有机发光二极管(oled)的发射体设计至关重要。本研究采用多尺度计算方法,结合经典分子动力学、量子化学计算和动力学蒙特卡罗模拟,研究了纯和掺杂薄膜形态下的多共振(MR)发射极二极体(Cy-tmCPBN)。我们的研究结果表明,薄膜形态和分子取向对能量传递效率有重要影响。在纯膜中,紧密的分子包装和良好的供体-受体排列促进了高效的分子间能量传递。相比之下,与含有与Cy-tmCPBN相同的供体片段的供体宿主(Cy-tmCP)掺杂会引入空间稀释并破坏分子排列,从而降低共振能量转移率。基于碎片间电荷转移和非共价相互作用框架的量子力学分析表明,虽然激发主要是局域的,但纯膜中微弱但不可忽略的分子间电子耦合促进了观察到的能量转移。这些发现强调了调整分子组织和结构刚度来控制激子行为和优化OLED发射极层中的能量传递的重要性,与通过合理的分子设计来提高器件性能的持续努力相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信