{"title":"Beyond unimodal analysis: Multimodal ensemble learning for enhanced assessment of atherosclerotic disease progression.","authors":"Valerio Guarrasi, Amanda Bertgren, Ulf Näslund, Patrik Wennberg, Paolo Soda, Christer Grönlund","doi":"10.1016/j.compmedimag.2025.102617","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerosis is a leading cardiovascular disease typified by fatty streaks accumulating within arterial walls, culminating in potential plaque ruptures and subsequent strokes. Existing clinical risk scores, such as systematic coronary risk estimation and Framingham risk score, profile cardiovascular risks based on factors like age, cholesterol, and smoking, among others. However, these scores display limited sensitivity in early disease detection. Parallelly, ultrasound-based risk markers, such as the carotid intima media thickness, while informative, only offer limited predictive power. Notably, current models largely focus on either ultrasound image-derived risk markers or clinical risk factor data without combining both for a comprehensive, multimodal assessment. This study introduces a multimodal ensemble learning framework to assess atherosclerosis severity, especially in its early sub-clinical stage. We utilize a multi-objective optimization targeting both performance and diversity, aiming to integrate features from each modality effectively. Our objective is to measure the efficacy of models using multimodal data in assessing vascular aging, i.e., plaque presence and vascular age, over a six-year period. We also delineate a procedure for optimal model selection from a vast pool, focusing on best-suited models for classification tasks. Additionally, through eXplainable Artificial Intelligence techniques, this work delves into understanding key model contributors and discerning unique subject subgroups.</p>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"124 ","pages":"102617"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compmedimag.2025.102617","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Atherosclerosis is a leading cardiovascular disease typified by fatty streaks accumulating within arterial walls, culminating in potential plaque ruptures and subsequent strokes. Existing clinical risk scores, such as systematic coronary risk estimation and Framingham risk score, profile cardiovascular risks based on factors like age, cholesterol, and smoking, among others. However, these scores display limited sensitivity in early disease detection. Parallelly, ultrasound-based risk markers, such as the carotid intima media thickness, while informative, only offer limited predictive power. Notably, current models largely focus on either ultrasound image-derived risk markers or clinical risk factor data without combining both for a comprehensive, multimodal assessment. This study introduces a multimodal ensemble learning framework to assess atherosclerosis severity, especially in its early sub-clinical stage. We utilize a multi-objective optimization targeting both performance and diversity, aiming to integrate features from each modality effectively. Our objective is to measure the efficacy of models using multimodal data in assessing vascular aging, i.e., plaque presence and vascular age, over a six-year period. We also delineate a procedure for optimal model selection from a vast pool, focusing on best-suited models for classification tasks. Additionally, through eXplainable Artificial Intelligence techniques, this work delves into understanding key model contributors and discerning unique subject subgroups.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.