{"title":"Temporal regulation of organelle biogenesis.","authors":"Aniruddha Nagarajan, Smruti Dixit, Sandeep Choubey","doi":"10.1088/1478-3975/adf9af","DOIUrl":null,"url":null,"abstract":"<p><p>Organelle abundance in cells is tightly regulated in response to external stimuli, but the underlying mechanisms remain poorly understood. Time-lapse imaging of fluorescently labelled organelles enables single-cell measurements of organelle copy numbers, revealing the time evolution of their distribution across a cell population. Building on a recently proposed kinetic model of organelle biogenesis, which incorporates de novo synthesis, fission, fusion, and degradation, we explore the time-dependent dynamics of organelle abundance. While previous studies focused on steady-state properties, here we calculate the first two moments of: 1) organelle copy numbers over time, and 2) first passage times to reach a specified organelle count. We show that these two moments provide a powerful means to discriminate between different mechanisms of organelle biogenesis. Notably, the time-dependent behaviour of organelle biogenesis reveals richer dynamics compared to the steady-state scenario. Our findings shed light on how cells attain steady-state organelle abundance after cell division and environmental perturbation.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/adf9af","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Organelle abundance in cells is tightly regulated in response to external stimuli, but the underlying mechanisms remain poorly understood. Time-lapse imaging of fluorescently labelled organelles enables single-cell measurements of organelle copy numbers, revealing the time evolution of their distribution across a cell population. Building on a recently proposed kinetic model of organelle biogenesis, which incorporates de novo synthesis, fission, fusion, and degradation, we explore the time-dependent dynamics of organelle abundance. While previous studies focused on steady-state properties, here we calculate the first two moments of: 1) organelle copy numbers over time, and 2) first passage times to reach a specified organelle count. We show that these two moments provide a powerful means to discriminate between different mechanisms of organelle biogenesis. Notably, the time-dependent behaviour of organelle biogenesis reveals richer dynamics compared to the steady-state scenario. Our findings shed light on how cells attain steady-state organelle abundance after cell division and environmental perturbation.
期刊介绍:
Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity.
Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as:
molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions
subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure
intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division
systems biology, e.g. signaling, gene regulation and metabolic networks
cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms
cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis
cell-cell interactions, cell aggregates, organoids, tissues and organs
developmental dynamics, including pattern formation and morphogenesis
physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation
neuronal systems, including information processing by networks, memory and learning
population dynamics, ecology, and evolution
collective action and emergence of collective phenomena.