Koichiro Yasaka, Rin Tsujimoto, Rintaro Miyo, Osamu Abe
{"title":"Reducing motion artifacts in the aorta: super-resolution deep learning reconstruction with motion reduction algorithm.","authors":"Koichiro Yasaka, Rin Tsujimoto, Rintaro Miyo, Osamu Abe","doi":"10.1007/s11604-025-01849-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To assess the efficacy of super-resolution deep learning reconstruction (SR-DLR) with motion reduction algorithm (SR-DLR-M) in mitigating aorta motion artifacts compared to SR-DLR and deep learning reconstruction with motion reduction algorithm (DLR-M).</p><p><strong>Materials and methods: </strong>This retrospective study included 86 patients (mean age, 65.0 ± 14.1 years; 53 males) who underwent contrast-enhanced CT including the chest region. CT images were reconstructed with SR-DLR-M, SR-DLR, and DLR-M. Circular or ovoid regions of interest were placed on the aorta, and the standard deviation of the CT attenuation was recorded as quantitative noise. From the CT attenuation profile along a line region of interest that intersected the left common carotid artery wall, edge rise slope and edge rise distance were calculated. Two readers assessed the images based on artifact, sharpness, noise, structure depiction, and diagnostic acceptability (for aortic dissection).</p><p><strong>Results: </strong>Quantitative noise was 7.4/5.4/8.3 Hounsfield unit (HU) in SR-DLR-M/SR-DLR/DLR-M. Significant differences were observed between SR-DLR-M vs. SR-DLR and DLR-M (p < 0.001). Edge rise slope and edge rise distance were 107.1/108.8/85.8 HU/mm and 1.6/1.5/2.0 mm, respectively, in SR-DLR-M/SR-DLR/DLR-M. Statistically significant differences were detected between SR-DLR-M vs. DLR-M (p ≤ 0.001 for both). Two readers scored artifacts in SR-DLR-M as significantly better than those in SR-DLR (p < 0.001). Scores for sharpness, noise, and structure depiction in SR-DLR-M were significantly better than those in DLR-M (p ≤ 0.005). Diagnostic acceptability in SR-DLR-M was significantly better than that in SR-DLR and DLR-M (p < 0.001).</p><p><strong>Conclusions: </strong>SR-DLR-M provided significantly better CT images in diagnosing aortic dissection compared to SR-DLR and DLR-M.</p>","PeriodicalId":14691,"journal":{"name":"Japanese Journal of Radiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11604-025-01849-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To assess the efficacy of super-resolution deep learning reconstruction (SR-DLR) with motion reduction algorithm (SR-DLR-M) in mitigating aorta motion artifacts compared to SR-DLR and deep learning reconstruction with motion reduction algorithm (DLR-M).
Materials and methods: This retrospective study included 86 patients (mean age, 65.0 ± 14.1 years; 53 males) who underwent contrast-enhanced CT including the chest region. CT images were reconstructed with SR-DLR-M, SR-DLR, and DLR-M. Circular or ovoid regions of interest were placed on the aorta, and the standard deviation of the CT attenuation was recorded as quantitative noise. From the CT attenuation profile along a line region of interest that intersected the left common carotid artery wall, edge rise slope and edge rise distance were calculated. Two readers assessed the images based on artifact, sharpness, noise, structure depiction, and diagnostic acceptability (for aortic dissection).
Results: Quantitative noise was 7.4/5.4/8.3 Hounsfield unit (HU) in SR-DLR-M/SR-DLR/DLR-M. Significant differences were observed between SR-DLR-M vs. SR-DLR and DLR-M (p < 0.001). Edge rise slope and edge rise distance were 107.1/108.8/85.8 HU/mm and 1.6/1.5/2.0 mm, respectively, in SR-DLR-M/SR-DLR/DLR-M. Statistically significant differences were detected between SR-DLR-M vs. DLR-M (p ≤ 0.001 for both). Two readers scored artifacts in SR-DLR-M as significantly better than those in SR-DLR (p < 0.001). Scores for sharpness, noise, and structure depiction in SR-DLR-M were significantly better than those in DLR-M (p ≤ 0.005). Diagnostic acceptability in SR-DLR-M was significantly better than that in SR-DLR and DLR-M (p < 0.001).
Conclusions: SR-DLR-M provided significantly better CT images in diagnosing aortic dissection compared to SR-DLR and DLR-M.
期刊介绍:
Japanese Journal of Radiology is a peer-reviewed journal, officially published by the Japan Radiological Society. The main purpose of the journal is to provide a forum for the publication of papers documenting recent advances and new developments in the field of radiology in medicine and biology. The scope of Japanese Journal of Radiology encompasses but is not restricted to diagnostic radiology, interventional radiology, radiation oncology, nuclear medicine, radiation physics, and radiation biology. Additionally, the journal covers technical and industrial innovations. The journal welcomes original articles, technical notes, review articles, pictorial essays and letters to the editor. The journal also provides announcements from the boards and the committees of the society. Membership in the Japan Radiological Society is not a prerequisite for submission. Contributions are welcomed from all parts of the world.