Enrichment of γ-NiOOH in ultrathin metal-organic framework nanosheet arrays by linker engineering for urea-assisted natural seawater electrolysis.

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2025-12-15 Epub Date: 2025-08-05 DOI:10.1016/j.jcis.2025.138618
Nguyen Duy Hai, Nhat Duy Tran, Thuy Tien Nguyen Tran, Jianmin Yu, Lishan Peng, Thi Anh Le, Phuong Dung Ngoc Tran, Nhu Hoa Thi Tran, Thang Bach Phan, Ngoc Quang Tran
{"title":"Enrichment of γ-NiOOH in ultrathin metal-organic framework nanosheet arrays by linker engineering for urea-assisted natural seawater electrolysis.","authors":"Nguyen Duy Hai, Nhat Duy Tran, Thuy Tien Nguyen Tran, Jianmin Yu, Lishan Peng, Thi Anh Le, Phuong Dung Ngoc Tran, Nhu Hoa Thi Tran, Thang Bach Phan, Ngoc Quang Tran","doi":"10.1016/j.jcis.2025.138618","DOIUrl":null,"url":null,"abstract":"<p><p>Metal-organic frameworks have been widely considered a potential alternative for noble metal catalysts for green hydrogen from seawater electrolysis, yet their performance is often limited by low activity and poor stability. Here, we propose a linker engineering strategy to optimize the phase composition of ultrathin Ni-MOF nanosheet arrays, aiming to enhance both activity and stability. We found that partial substitution of terephthalic acid (BDC) with electron-withdrawing tetrafluoroterephthalate (TFBDC) ligand alters the electronic structure and significantly promotes the formation of the catalytically active γ-NiOOH phase in Ni-TFBDC-2. This results in a 90 mV reduction in the overpotential for the oxygen evolution reaction at 50 mA cm<sup>-2</sup>, surpassing the performance of a state-of-the-art RuO<sub>2</sub> catalyst, and is accompanied by an increased corrosion potential in seawater. Furthermore, the enrichment of the γ-NiOOH phase in Ni-TFBDC-2 effectively suppresses the passivation during urea oxidation reaction (UOR) in a seawater electrolyte, enabling the achievement of an industrially relevant current density of 0.8 A cm<sup>-2</sup>. Operando characterizations reveal that Ni-TFBDC-2 undergoes an electrooxidation process to form Ni<sup>3+</sup> species, which subsequently act as the active catalytic sites for the OER. Additionally, the urea-assisted natural seawater electrolyzer assembled with Ni-TFBDC-2 requires a low voltage of 1.76 V at 400 mA cm<sup>-2</sup> and demonstrates excellent durability over 170 h of continuous operation. This work offers a novel strategy to enrich the catalytically active phase in MOF-based electrocatalysts, aiming to achieve high activity and long-term stability during urea-assisted natural seawater electrolysis. It is noteworthy that different notable aspects, such as the durability of the materials after prolonged reaction, should be more thoroughly considered for practical applications on larger scales.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"700 Pt 3","pages":"138618"},"PeriodicalIF":9.7000,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2025.138618","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metal-organic frameworks have been widely considered a potential alternative for noble metal catalysts for green hydrogen from seawater electrolysis, yet their performance is often limited by low activity and poor stability. Here, we propose a linker engineering strategy to optimize the phase composition of ultrathin Ni-MOF nanosheet arrays, aiming to enhance both activity and stability. We found that partial substitution of terephthalic acid (BDC) with electron-withdrawing tetrafluoroterephthalate (TFBDC) ligand alters the electronic structure and significantly promotes the formation of the catalytically active γ-NiOOH phase in Ni-TFBDC-2. This results in a 90 mV reduction in the overpotential for the oxygen evolution reaction at 50 mA cm-2, surpassing the performance of a state-of-the-art RuO2 catalyst, and is accompanied by an increased corrosion potential in seawater. Furthermore, the enrichment of the γ-NiOOH phase in Ni-TFBDC-2 effectively suppresses the passivation during urea oxidation reaction (UOR) in a seawater electrolyte, enabling the achievement of an industrially relevant current density of 0.8 A cm-2. Operando characterizations reveal that Ni-TFBDC-2 undergoes an electrooxidation process to form Ni3+ species, which subsequently act as the active catalytic sites for the OER. Additionally, the urea-assisted natural seawater electrolyzer assembled with Ni-TFBDC-2 requires a low voltage of 1.76 V at 400 mA cm-2 and demonstrates excellent durability over 170 h of continuous operation. This work offers a novel strategy to enrich the catalytically active phase in MOF-based electrocatalysts, aiming to achieve high activity and long-term stability during urea-assisted natural seawater electrolysis. It is noteworthy that different notable aspects, such as the durability of the materials after prolonged reaction, should be more thoroughly considered for practical applications on larger scales.

脲辅助天然海水电解中超薄金属-有机骨架纳米片阵列中γ-NiOOH的富集
金属有机框架被广泛认为是贵金属催化剂的潜在替代品,但其性能往往受到活性低和稳定性差的限制。在此,我们提出了一种连接器工程策略来优化超薄Ni-MOF纳米片阵列的相组成,旨在提高活性和稳定性。我们发现,吸电子的四氟对苯二甲酸酯(TFBDC)配体部分取代对苯二甲酸(BDC)改变了Ni-TFBDC-2的电子结构,显著促进了催化活性γ-NiOOH相的形成。这使得在50 mA cm-2下析氧反应的过电位降低了90 mV,超过了最先进的RuO2催化剂的性能,并且伴随着海水腐蚀电位的增加。此外,Ni-TFBDC-2中γ-NiOOH相的富集有效抑制了海水电解质中尿素氧化反应(UOR)的钝化,从而实现了工业上相关的0.8 a cm-2电流密度。Operando表征表明,Ni-TFBDC-2经历电氧化过程形成Ni3+, Ni3+随后作为OER的活性催化位点。此外,与Ni-TFBDC-2组装的尿素辅助天然海水电解槽在400 mA cm-2下需要1.76 V的低电压,并且在170小时的连续运行中表现出出色的耐久性。本研究为丰富mof基电催化剂的催化活性相提供了一种新的策略,旨在实现尿素辅助天然海水电解过程中的高活性和长期稳定性。值得注意的是,在更大规模的实际应用中,应该更彻底地考虑材料在长时间反应后的耐久性等不同值得注意的方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信