Source localization in shallow ocean using a deep learning approach with range-dependent sound speed profile modeling.

IF 1.4 Q3 ACOUSTICS
Jing Guo, Juan Zeng
{"title":"Source localization in shallow ocean using a deep learning approach with range-dependent sound speed profile modeling.","authors":"Jing Guo, Juan Zeng","doi":"10.1121/10.0038764","DOIUrl":null,"url":null,"abstract":"<p><p>Model-based deep learning approaches provide an alternative scheme to address the problem of the shortage of training data. However, performance degradation caused by sound speed profile (SSP) mismatch remains a critical challenge, particularly in shallow-water environments influenced by internal waves. In this paper, a simple range-dependent SSP model is integrated into the deep learning approach for source localization. The network trained on simulated data generated with the range-dependent SSP model performs well on validation data and generalizes to experimental test data after transfer learning with limited experimental samples.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"5 8","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0038764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Model-based deep learning approaches provide an alternative scheme to address the problem of the shortage of training data. However, performance degradation caused by sound speed profile (SSP) mismatch remains a critical challenge, particularly in shallow-water environments influenced by internal waves. In this paper, a simple range-dependent SSP model is integrated into the deep learning approach for source localization. The network trained on simulated data generated with the range-dependent SSP model performs well on validation data and generalizes to experimental test data after transfer learning with limited experimental samples.

基于距离相关声速剖面建模的浅海声源定位深度学习方法。
基于模型的深度学习方法为解决训练数据短缺的问题提供了一种替代方案。然而,声速分布(SSP)失配导致的性能下降仍然是一个严峻的挑战,特别是在受内波影响的浅水环境中。本文将一种简单的距离相关SSP模型集成到深度学习方法中,用于源定位。在距离依赖的SSP模型生成的模拟数据上训练的网络在验证数据上表现良好,并且在有限实验样本的迁移学习后可以推广到实验测试数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信