Balancing Radiation Dose Reduction and Image Quality in Chest Computed Tomography using Silicon Rubber-barium Sulfate Composite Shield.

IF 1.1 Q4 ENGINEERING, BIOMEDICAL
Journal of Medical Signals & Sensors Pub Date : 2025-07-10 eCollection Date: 2025-01-01 DOI:10.4103/jmss.jmss_61_24
Mohammad Keshtkar, Saeedeh Yazdanifar
{"title":"Balancing Radiation Dose Reduction and Image Quality in Chest Computed Tomography using Silicon Rubber-barium Sulfate Composite Shield.","authors":"Mohammad Keshtkar, Saeedeh Yazdanifar","doi":"10.4103/jmss.jmss_61_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>During chest CT examinations, the breasts are exposed to a significant amount of radiation, increasing the risk of radiation-induced cancers. The objective of this study is to develop and evaluate a novel silicon rubber-barium sulfate (BaSO4) composite breast shield for reducing radiation dose in chest computed tomography (CT) examinations while minimizing impact on image quality.</p><p><strong>Methods: </strong>Four breast shields were fabricated: one with 10% bismuth and three with 10%, 15%, and 20% BaSO4. Dose reduction was assessed using a thorax phantom and ionization chamber. Image quality effects were evaluated in the thorax phantom by measuring noise and CT number changes. The 10% barium shield was further tested on 22 patients undergoing chest CT.</p><p><strong>Results: </strong>The 10%, 15%, and 20% barium shields reduced breast dose by 36.8%, 38.6%, and 45.6%, respectively, while the 10% bismuth shield achieved a 63.1% reduction. However, the 10% barium shield had minimal impact on image quality, increasing lung noise by only 0.3 Hounsfield units (HU) and shifting CT numbers by 4.7 HU. In patient studies, 81.8% of scans showed no artifacts, with 18.2% showing slight artifacts.</p><p><strong>Conclusion: </strong>The 10% BaSO4 shield effectively reduced breast dose while maintaining image quality, presenting a viable alternative to bismuth shielding for radiation protection in chest CT examinations.</p>","PeriodicalId":37680,"journal":{"name":"Journal of Medical Signals & Sensors","volume":"15 ","pages":"20"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12331176/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Signals & Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmss.jmss_61_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: During chest CT examinations, the breasts are exposed to a significant amount of radiation, increasing the risk of radiation-induced cancers. The objective of this study is to develop and evaluate a novel silicon rubber-barium sulfate (BaSO4) composite breast shield for reducing radiation dose in chest computed tomography (CT) examinations while minimizing impact on image quality.

Methods: Four breast shields were fabricated: one with 10% bismuth and three with 10%, 15%, and 20% BaSO4. Dose reduction was assessed using a thorax phantom and ionization chamber. Image quality effects were evaluated in the thorax phantom by measuring noise and CT number changes. The 10% barium shield was further tested on 22 patients undergoing chest CT.

Results: The 10%, 15%, and 20% barium shields reduced breast dose by 36.8%, 38.6%, and 45.6%, respectively, while the 10% bismuth shield achieved a 63.1% reduction. However, the 10% barium shield had minimal impact on image quality, increasing lung noise by only 0.3 Hounsfield units (HU) and shifting CT numbers by 4.7 HU. In patient studies, 81.8% of scans showed no artifacts, with 18.2% showing slight artifacts.

Conclusion: The 10% BaSO4 shield effectively reduced breast dose while maintaining image quality, presenting a viable alternative to bismuth shielding for radiation protection in chest CT examinations.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

硅橡胶-硫酸钡复合屏蔽在胸部计算机断层扫描中平衡辐射剂量降低和图像质量。
背景:在胸部CT检查时,乳房暴露在大量的辐射中,增加了辐射诱发癌症的风险。本研究的目的是开发和评估一种新型硅橡胶-硫酸钡(BaSO4)复合护乳,以降低胸部计算机断层扫描(CT)检查中的辐射剂量,同时最大限度地减少对图像质量的影响。方法:采用10%铋和10%、15%、20% BaSO4制备四种护乳。使用胸腔幻影和电离室评估剂量减少。通过测量噪声和CT数变化来评估胸影的图像质量效果。在22例接受胸部CT的患者上进一步测试了10%钡屏蔽。结果:10%、15%和20%的钡屏蔽层分别降低了36.8%、38.6%和45.6%的乳腺剂量,而10%的铋屏蔽层降低了63.1%。然而,10%的钡屏蔽对图像质量的影响最小,仅增加0.3 Hounsfield单位(HU)的肺噪声和4.7 HU的CT数移位。在患者研究中,81.8%的扫描显示无伪影,18.2%显示轻微伪影。结论:10% BaSO4屏蔽能有效降低乳腺剂量,同时保持图像质量,是胸部CT检查中替代铋屏蔽进行辐射防护的可行选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Signals & Sensors
Journal of Medical Signals & Sensors ENGINEERING, BIOMEDICAL-
CiteScore
2.30
自引率
0.00%
发文量
53
审稿时长
33 weeks
期刊介绍: JMSS is an interdisciplinary journal that incorporates all aspects of the biomedical engineering including bioelectrics, bioinformatics, medical physics, health technology assessment, etc. Subject areas covered by the journal include: - Bioelectric: Bioinstruments Biosensors Modeling Biomedical signal processing Medical image analysis and processing Medical imaging devices Control of biological systems Neuromuscular systems Cognitive sciences Telemedicine Robotic Medical ultrasonography Bioelectromagnetics Electrophysiology Cell tracking - Bioinformatics and medical informatics: Analysis of biological data Data mining Stochastic modeling Computational genomics Artificial intelligence & fuzzy Applications Medical softwares Bioalgorithms Electronic health - Biophysics and medical physics: Computed tomography Radiation therapy Laser therapy - Education in biomedical engineering - Health technology assessment - Standard in biomedical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信