A Nonlinear Method to Identify Seizure Dynamic Trajectory Based on Variance of Recurrence Rate in Human Epilepsy Patients Using EEG.

IF 1.1 Q4 ENGINEERING, BIOMEDICAL
Journal of Medical Signals & Sensors Pub Date : 2025-07-10 eCollection Date: 2025-01-01 DOI:10.4103/jmss.jmss_73_24
Morteza Farahi, Seyed Saman Sajadi, Fateme Karbasi, Seyed Sohrab Hashemi Fesharaki, Jafar Mehvari Habibabadi, Mohsen Reza Haidari, Amir Homayoun Jafari
{"title":"A Nonlinear Method to Identify Seizure Dynamic Trajectory Based on Variance of Recurrence Rate in Human Epilepsy Patients Using EEG.","authors":"Morteza Farahi, Seyed Saman Sajadi, Fateme Karbasi, Seyed Sohrab Hashemi Fesharaki, Jafar Mehvari Habibabadi, Mohsen Reza Haidari, Amir Homayoun Jafari","doi":"10.4103/jmss.jmss_73_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Surgery is a well-established treatment for drug-resistant epilepsy, but outcomes are often suboptimal, especially when no lesion is visible on preoperative imaging. A major challenge in determining the seizure's origin and spread is interpreting electroencephalogram (EEG) data. Accurately tracing the seizure's signal trajectory, given the brain's complex behavior, remains a crucial hurdle.</p><p><strong>Materials and methods: </strong>In this study, EEG data from 17 patients were analyzed, using the clinical interpretations of the epileptogenic region as the gold standard. Quantification analysis of recurrence plots primarily based on variance in recurrence rate was used to identify the regions involved during seizures based on investigation of the recurrence phenomena between the regions. This method allowed for a stage-wise analysis across EEG electrodes, highlighting simultaneously involved areas.</p><p><strong>Results: </strong>The method effectively distinguished involved from noninvolved regions across anterior, posterior, right temporal, and left temporal areas with macro averaged F-score of 95.54. For the anterior region, it achieved an overall accuracy (correct predictions out of total predictions) of 86.96%, sensitivity (ability to correctly identify seizure-involved regions) of 82.79%, and specificity (ability to correctly identify non-involved regions) of 86.96%. For the other regions, accuracy, sensitivity, and specificity values ranged from 66.0% to 89.13%.</p><p><strong>Conclusions: </strong>This approach could pinpoint brain regions involved in seizures at any stage and could be useful for clinical monitoring and surgical planning. The method's simplicity and strong performance suggest it is promising for the real-time application during epilepsy treatment.</p>","PeriodicalId":37680,"journal":{"name":"Journal of Medical Signals & Sensors","volume":"15 ","pages":"19"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12331190/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Signals & Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmss.jmss_73_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Surgery is a well-established treatment for drug-resistant epilepsy, but outcomes are often suboptimal, especially when no lesion is visible on preoperative imaging. A major challenge in determining the seizure's origin and spread is interpreting electroencephalogram (EEG) data. Accurately tracing the seizure's signal trajectory, given the brain's complex behavior, remains a crucial hurdle.

Materials and methods: In this study, EEG data from 17 patients were analyzed, using the clinical interpretations of the epileptogenic region as the gold standard. Quantification analysis of recurrence plots primarily based on variance in recurrence rate was used to identify the regions involved during seizures based on investigation of the recurrence phenomena between the regions. This method allowed for a stage-wise analysis across EEG electrodes, highlighting simultaneously involved areas.

Results: The method effectively distinguished involved from noninvolved regions across anterior, posterior, right temporal, and left temporal areas with macro averaged F-score of 95.54. For the anterior region, it achieved an overall accuracy (correct predictions out of total predictions) of 86.96%, sensitivity (ability to correctly identify seizure-involved regions) of 82.79%, and specificity (ability to correctly identify non-involved regions) of 86.96%. For the other regions, accuracy, sensitivity, and specificity values ranged from 66.0% to 89.13%.

Conclusions: This approach could pinpoint brain regions involved in seizures at any stage and could be useful for clinical monitoring and surgical planning. The method's simplicity and strong performance suggest it is promising for the real-time application during epilepsy treatment.

一种基于脑电图复发率方差的非线性癫痫动态轨迹识别方法。
背景:手术是一种公认的治疗耐药癫痫的方法,但结果往往不理想,特别是当术前影像学未见病变时。确定癫痫发作的起源和扩散的一个主要挑战是解释脑电图(EEG)数据。考虑到大脑的复杂行为,准确追踪癫痫发作的信号轨迹仍然是一个关键的障碍。材料与方法:对17例患者的脑电图数据进行分析,以癫痫发生区临床解释为金标准。基于复发率方差对复发率图进行量化分析,通过研究各区域之间的复发现象,确定癫痫发作时涉及的区域。这种方法允许在EEG电极上进行阶段分析,突出显示同时涉及的区域。结果:该方法能有效区分前、后、右、左颞区受累与非受累区域,宏观平均f值为95.54。对于前部区域,它的总体准确度(在总预测中正确预测)为86.96%,灵敏度(正确识别癫痫发作相关区域的能力)为82.79%,特异性(正确识别非癫痫发作相关区域的能力)为86.96%。对于其他区域,准确度、灵敏度和特异性值范围为66.0%至89.13%。结论:该方法可以精确定位癫痫发作的任何阶段的大脑区域,对临床监测和手术计划都有帮助。该方法简单、性能好,可用于癫痫治疗的实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Signals & Sensors
Journal of Medical Signals & Sensors ENGINEERING, BIOMEDICAL-
CiteScore
2.30
自引率
0.00%
发文量
53
审稿时长
33 weeks
期刊介绍: JMSS is an interdisciplinary journal that incorporates all aspects of the biomedical engineering including bioelectrics, bioinformatics, medical physics, health technology assessment, etc. Subject areas covered by the journal include: - Bioelectric: Bioinstruments Biosensors Modeling Biomedical signal processing Medical image analysis and processing Medical imaging devices Control of biological systems Neuromuscular systems Cognitive sciences Telemedicine Robotic Medical ultrasonography Bioelectromagnetics Electrophysiology Cell tracking - Bioinformatics and medical informatics: Analysis of biological data Data mining Stochastic modeling Computational genomics Artificial intelligence & fuzzy Applications Medical softwares Bioalgorithms Electronic health - Biophysics and medical physics: Computed tomography Radiation therapy Laser therapy - Education in biomedical engineering - Health technology assessment - Standard in biomedical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信