GAN-MRI enhanced multi-organ MRI segmentation: a deep learning perspective.

IF 1.5 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Arvind Channarayapatna Srinivasa, Seema S Bhat, Dikendra Baduwal, Zheng Ting Jordan Sim, Shamshekhar S Patil, Ashwin Amarapur, K N Bhanu Prakash
{"title":"GAN-MRI enhanced multi-organ MRI segmentation: a deep learning perspective.","authors":"Arvind Channarayapatna Srinivasa, Seema S Bhat, Dikendra Baduwal, Zheng Ting Jordan Sim, Shamshekhar S Patil, Ashwin Amarapur, K N Bhanu Prakash","doi":"10.1007/s12194-025-00938-7","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical magnetic resonance imaging (MRI) is a high-resolution tool widely used for detailed anatomical imaging. However, prolonged scan times often lead to motion artefacts and patient discomfort. Fast acquisition techniques can reduce scan times but often produce noisy, low-contrast images, compromising segmentation accuracy essential for diagnosis and treatment planning. To address these limitations, we developed an end-to-end framework that incorporates BIDS-based data organiser and anonymizer, a GAN-based MR image enhancement model (GAN-MRI), AssemblyNet for brain region segmentation, and an attention-residual U-Net with Guided loss for abdominal and thigh segmentation. Thirty brain scans (5,400 slices) and 32 abdominal (1,920 slices) and 55 thigh scans (2,200 slices) acquired from multiple MRI scanners (GE, Siemens, Toshiba) underwent evaluation. Image quality improved significantly, with SNR and CNR for brain scans increasing from 28.44 to 42.92 (p < 0.001) and 11.88 to 18.03 (p < 0.001), respectively. Abdominal scans exhibited SNR increases from 35.30 to 50.24 (p < 0.001) and CNR from 10,290.93 to 93,767.22 (p < 0.001). Double-blind evaluations highlighted improved visualisations of anatomical structures and bias field correction. Segmentation performance improved substantially in the thigh (muscle: + 21%, IMAT: + 9%) and abdominal regions (SSAT: + 1%, DSAT: + 2%, VAT: + 12%), while brain segmentation metrics remained largely stable, reflecting the robustness of the baseline model. Proposed framework is designed to handle data from multiple anatomies with variations from different MRI scanners and centres by enhancing MRI scan and improving segmentation accuracy, diagnostic precision and treatment planning while reducing scan times and maintaining patient comfort.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-025-00938-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Clinical magnetic resonance imaging (MRI) is a high-resolution tool widely used for detailed anatomical imaging. However, prolonged scan times often lead to motion artefacts and patient discomfort. Fast acquisition techniques can reduce scan times but often produce noisy, low-contrast images, compromising segmentation accuracy essential for diagnosis and treatment planning. To address these limitations, we developed an end-to-end framework that incorporates BIDS-based data organiser and anonymizer, a GAN-based MR image enhancement model (GAN-MRI), AssemblyNet for brain region segmentation, and an attention-residual U-Net with Guided loss for abdominal and thigh segmentation. Thirty brain scans (5,400 slices) and 32 abdominal (1,920 slices) and 55 thigh scans (2,200 slices) acquired from multiple MRI scanners (GE, Siemens, Toshiba) underwent evaluation. Image quality improved significantly, with SNR and CNR for brain scans increasing from 28.44 to 42.92 (p < 0.001) and 11.88 to 18.03 (p < 0.001), respectively. Abdominal scans exhibited SNR increases from 35.30 to 50.24 (p < 0.001) and CNR from 10,290.93 to 93,767.22 (p < 0.001). Double-blind evaluations highlighted improved visualisations of anatomical structures and bias field correction. Segmentation performance improved substantially in the thigh (muscle: + 21%, IMAT: + 9%) and abdominal regions (SSAT: + 1%, DSAT: + 2%, VAT: + 12%), while brain segmentation metrics remained largely stable, reflecting the robustness of the baseline model. Proposed framework is designed to handle data from multiple anatomies with variations from different MRI scanners and centres by enhancing MRI scan and improving segmentation accuracy, diagnostic precision and treatment planning while reducing scan times and maintaining patient comfort.

GAN-MRI增强多器官MRI分割:深度学习视角。
临床磁共振成像(MRI)是一种高分辨率的工具,广泛用于详细的解剖成像。然而,长时间的扫描往往导致运动伪影和患者不适。快速采集技术可以减少扫描时间,但通常会产生噪声,低对比度的图像,影响诊断和治疗计划必不可少的分割准确性。为了解决这些限制,我们开发了一个端到端框架,该框架结合了基于bids的数据整理器和匿名器,基于gan的MR图像增强模型(GAN-MRI),用于脑区域分割的AssemblyNet,以及用于腹部和大腿分割的带有引导损失的注意力残留U-Net。通过多台MRI扫描仪(GE、Siemens、Toshiba)获得30张脑部扫描(5400片)、32张腹部扫描(1920片)和55张大腿扫描(2200片)。图像质量显著提高,脑部扫描的信噪比和信噪比从28.44提高到42.92
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信