{"title":"Triptonide stabilizes BIM to enhance oxaliplatin-induced ferroptosis and apoptosis in colorectal cancer.","authors":"Ji Ma, Liyun Zheng, Shiji Fang, Wenjing Yang, Yiming Ding, Mengyuan Wang, Jiale Chen, Qiaoyou Weng, Zouying Yao, Chuan Jiang, Minjiang Chen, Hongtao Xu, Jiansong Ji","doi":"10.1016/j.tranon.2025.102491","DOIUrl":null,"url":null,"abstract":"<p><p>Oxaliplatin (OXA) is a common chemotherapeutic agent for advanced colorectal cancer. However, its effectiveness is limited by drug resistance, highlighting the need for combination therapies. In this study, Triptonide (TN), a diterpenoid compound is used to enhance the sensitivity of OXA, and the underlying mechanisms are investigated. Our findings indicated the combination of TN and OXA demonstrated strong synergistic anti-tumor effects across a broad concentration range in both HCT116 and LoVo cell lines, particularly at ratios ranging from 1:312 to 1:156. The combination of TN and OXA at low doses effectively inhibits growth and induces cell death in HCT116 and LoVo cells. TN and OXA cotreatment causes severe mitochondrial damage in colorectal cancer cells, leading to intracellular reactive oxygen species (ROS) accumulation, which subsequently triggers apoptosis and ferroptosis. Mechanistically, TN directly binds to BIM, a pro-apoptotic and ferroptotic protein, and stabilizes it. TN treatment led to increased expression of BIM and knockdown of BIM alleviated the growth inhibition of OXA in colorectal cancer cells. Finally, TN and OXA cotreatment significantly reduced the tumor weight and volume of LoVo-bearing nude mice in vivo. Taken together, our findings indicate that TN may serve as a novel therapeutic agent to enhance the efficacy OXA in the treatment of colorectal cancer.</p>","PeriodicalId":23244,"journal":{"name":"Translational Oncology","volume":"60 ","pages":"102491"},"PeriodicalIF":4.1000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12354971/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tranon.2025.102491","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oxaliplatin (OXA) is a common chemotherapeutic agent for advanced colorectal cancer. However, its effectiveness is limited by drug resistance, highlighting the need for combination therapies. In this study, Triptonide (TN), a diterpenoid compound is used to enhance the sensitivity of OXA, and the underlying mechanisms are investigated. Our findings indicated the combination of TN and OXA demonstrated strong synergistic anti-tumor effects across a broad concentration range in both HCT116 and LoVo cell lines, particularly at ratios ranging from 1:312 to 1:156. The combination of TN and OXA at low doses effectively inhibits growth and induces cell death in HCT116 and LoVo cells. TN and OXA cotreatment causes severe mitochondrial damage in colorectal cancer cells, leading to intracellular reactive oxygen species (ROS) accumulation, which subsequently triggers apoptosis and ferroptosis. Mechanistically, TN directly binds to BIM, a pro-apoptotic and ferroptotic protein, and stabilizes it. TN treatment led to increased expression of BIM and knockdown of BIM alleviated the growth inhibition of OXA in colorectal cancer cells. Finally, TN and OXA cotreatment significantly reduced the tumor weight and volume of LoVo-bearing nude mice in vivo. Taken together, our findings indicate that TN may serve as a novel therapeutic agent to enhance the efficacy OXA in the treatment of colorectal cancer.
期刊介绍:
Translational Oncology publishes the results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of oncology patients. Translational Oncology will publish laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer. Peer reviewed manuscript types include Original Reports, Reviews and Editorials.