Sukran Erdem, Orhan Erdem, M Tarique Hussain, F Gerald Greil, Qing Zou
{"title":"Accelerated Non-Contrast-Enhanced Three-Dimensional Cardiovascular Magnetic Resonance Deep Learning Reconstruction.","authors":"Sukran Erdem, Orhan Erdem, M Tarique Hussain, F Gerald Greil, Qing Zou","doi":"10.31083/RCM37399","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cardiovascular magnetic resonance (CMR) is a time-consuming, yet critical imaging method. In contrast, while rapid techniques accelerate image acquisition, these methods can also compromise image quality. Meanwhile, the effectiveness of Adaptive CS-Net, a vendor-supported deep-learning magnetic resonance (MR) reconstruction algorithm, for non-contrast three-dimensional (3D) whole-heart imaging using relaxation-enhanced angiography without contrast and triggering (REACT) remains uncertain.</p><p><strong>Methods: </strong>Thirty participants were prospectively recruited for this study. Each underwent non-contrast imaging that included a modified REACT sequence and a standard 3D balanced steady-state free precession (bSSFP) sequence. The REACT data were acquired through six-fold undersampling and reconstructed offline using both conventional compressed sensing (CS) and an Adaptive CS-Net algorithm. Subjective and objective image quality assessments, as well as cross-sectional area measurements of selected vessels, were conducted to compare the REACT images reconstructed using Adaptive CS-Net against those reconstructed using conventional CS, as well as the standard bSSFP sequence. For a statistical comparison of image quality across these three image sets, the nonparametric Friedman test was performed, followed by Dunn's post-hoc test.</p><p><strong>Results: </strong>The Adaptive CS-Net and CS-reconstructed REACT images exhibited superior image quality for pulmonary veins, neck, and upper thoracic vessels compared to the standard 3D bSSFP sequence. Adaptive CS-Net and CS reconstructed REACT images displayed significantly higher contrast-to-noise ratio (CNR) compared to those reconstructed using the 3D bSSFP sequence (all <i>p</i>-values < 0.05) for the left upper (5.40, 5.53, 0.97), left lower (6.33, 5.84, 2.27), right upper (5.49, 6.74, 1.18), and right lower pulmonary veins (6.71, 6.41, 1.26). Additionally, REACT methods showed a statistically significant improvement in CNR for both the ascending aorta and superior vena cava compared to the 3D bSSFP sequence.</p><p><strong>Conclusions: </strong>The Adaptive CS-Net reconstruction for the REACT images consistently delivered superior or comparable image quality compared to the CS technique. Notably, the Adaptive CS-Net reconstruction provides significantly enhanced image quality for pulmonary veins, neck, and upper thoracic vessels compared to 3D bSSFP.</p>","PeriodicalId":20989,"journal":{"name":"Reviews in cardiovascular medicine","volume":"26 7","pages":"37399"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12326416/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in cardiovascular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/RCM37399","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cardiovascular magnetic resonance (CMR) is a time-consuming, yet critical imaging method. In contrast, while rapid techniques accelerate image acquisition, these methods can also compromise image quality. Meanwhile, the effectiveness of Adaptive CS-Net, a vendor-supported deep-learning magnetic resonance (MR) reconstruction algorithm, for non-contrast three-dimensional (3D) whole-heart imaging using relaxation-enhanced angiography without contrast and triggering (REACT) remains uncertain.
Methods: Thirty participants were prospectively recruited for this study. Each underwent non-contrast imaging that included a modified REACT sequence and a standard 3D balanced steady-state free precession (bSSFP) sequence. The REACT data were acquired through six-fold undersampling and reconstructed offline using both conventional compressed sensing (CS) and an Adaptive CS-Net algorithm. Subjective and objective image quality assessments, as well as cross-sectional area measurements of selected vessels, were conducted to compare the REACT images reconstructed using Adaptive CS-Net against those reconstructed using conventional CS, as well as the standard bSSFP sequence. For a statistical comparison of image quality across these three image sets, the nonparametric Friedman test was performed, followed by Dunn's post-hoc test.
Results: The Adaptive CS-Net and CS-reconstructed REACT images exhibited superior image quality for pulmonary veins, neck, and upper thoracic vessels compared to the standard 3D bSSFP sequence. Adaptive CS-Net and CS reconstructed REACT images displayed significantly higher contrast-to-noise ratio (CNR) compared to those reconstructed using the 3D bSSFP sequence (all p-values < 0.05) for the left upper (5.40, 5.53, 0.97), left lower (6.33, 5.84, 2.27), right upper (5.49, 6.74, 1.18), and right lower pulmonary veins (6.71, 6.41, 1.26). Additionally, REACT methods showed a statistically significant improvement in CNR for both the ascending aorta and superior vena cava compared to the 3D bSSFP sequence.
Conclusions: The Adaptive CS-Net reconstruction for the REACT images consistently delivered superior or comparable image quality compared to the CS technique. Notably, the Adaptive CS-Net reconstruction provides significantly enhanced image quality for pulmonary veins, neck, and upper thoracic vessels compared to 3D bSSFP.
期刊介绍:
RCM is an international, peer-reviewed, open access journal. RCM publishes research articles, review papers and short communications on cardiovascular medicine as well as research on cardiovascular disease. We aim to provide a forum for publishing papers which explore the pathogenesis and promote the progression of cardiac and vascular diseases. We also seek to establish an interdisciplinary platform, focusing on translational issues, to facilitate the advancement of research, clinical treatment and diagnostic procedures. Heart surgery, cardiovascular imaging, risk factors and various clinical cardiac & vascular research will be considered.