Katerina Hadrava Vanova, Ondrej Uher, Michal Kraus, Sona Miklovicova, Katerina Honigova, Stanislaw Gwiezdzinski, Timothy J Garrett, Hans Ghayee, Michal Masarik, Herui Wang, Zhengping Zhuang, Jiri Neuzil, Chunzhang Yang, Karel Pacak
{"title":"Development of succinate dehydrogenase subunit B-deficient tumor models for preclinical immunotherapy testing.","authors":"Katerina Hadrava Vanova, Ondrej Uher, Michal Kraus, Sona Miklovicova, Katerina Honigova, Stanislaw Gwiezdzinski, Timothy J Garrett, Hans Ghayee, Michal Masarik, Herui Wang, Zhengping Zhuang, Jiri Neuzil, Chunzhang Yang, Karel Pacak","doi":"10.1016/j.canlet.2025.217969","DOIUrl":null,"url":null,"abstract":"<p><p>Immunotherapy has advanced the treatment landscape for many challenging cancers by harnessing the immune system to eliminate tumor cells. However, its efficacy in rare tumors such as pheochromocytoma and paraganglioma (PCC/PGL), particularly those with succinate dehydrogenase B (SDHB) mutations, remains underexplored. These tumors often exhibit complex tumor microenvironments and immune evasion mechanisms, and their low incidence hinders clinical trials development. Together, these challenges underscore the need for robust preclinical models that closely mirror human disease and support therapeutic discovery. In this study, we developed and characterized murine models of SDHB-deficient tumors using CRISPR-mediated gene editing in pheochromocytoma (MPC and MTT) and renal carcinoma (RenCa) cell lines. These models recapitulate key metabolic and immunological features of human SDHB-mutated tumors, which exhibit loss of SDHB protein expression, providing a relevant platform for evaluating immunotherapeutic strategies. We subsequently tested intratumoral immunotherapy with Mannan-BAM, TLR ligands, and an Anti-CD40 antibody (MBTA), a combination designed to overcome tumor-induced immune suppression. Our results indicate that SDHB-deficient PCC tumors exhibit increased antigen presentation and strong immune activation, leading to rejection or delayed progression in immunocompetent mice. In contrast, Sdhb knock-out RenCa tumors consistently formed, allowing therapeutic testing. MBTA therapy effectively eradicated these tumors, prevented metastasis, and induced long-term immune memory. These findings highlight the value of genetically engineered, tissue-specific murine models in predicting immunotherapy outcomes in rare cancers. Moreover, they support the therapeutic potential of MBTA for treating SDHB-deficient renal cell carcinoma and provide a rationale for further translational studies.</p>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":" ","pages":"217969"},"PeriodicalIF":10.1000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.canlet.2025.217969","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immunotherapy has advanced the treatment landscape for many challenging cancers by harnessing the immune system to eliminate tumor cells. However, its efficacy in rare tumors such as pheochromocytoma and paraganglioma (PCC/PGL), particularly those with succinate dehydrogenase B (SDHB) mutations, remains underexplored. These tumors often exhibit complex tumor microenvironments and immune evasion mechanisms, and their low incidence hinders clinical trials development. Together, these challenges underscore the need for robust preclinical models that closely mirror human disease and support therapeutic discovery. In this study, we developed and characterized murine models of SDHB-deficient tumors using CRISPR-mediated gene editing in pheochromocytoma (MPC and MTT) and renal carcinoma (RenCa) cell lines. These models recapitulate key metabolic and immunological features of human SDHB-mutated tumors, which exhibit loss of SDHB protein expression, providing a relevant platform for evaluating immunotherapeutic strategies. We subsequently tested intratumoral immunotherapy with Mannan-BAM, TLR ligands, and an Anti-CD40 antibody (MBTA), a combination designed to overcome tumor-induced immune suppression. Our results indicate that SDHB-deficient PCC tumors exhibit increased antigen presentation and strong immune activation, leading to rejection or delayed progression in immunocompetent mice. In contrast, Sdhb knock-out RenCa tumors consistently formed, allowing therapeutic testing. MBTA therapy effectively eradicated these tumors, prevented metastasis, and induced long-term immune memory. These findings highlight the value of genetically engineered, tissue-specific murine models in predicting immunotherapy outcomes in rare cancers. Moreover, they support the therapeutic potential of MBTA for treating SDHB-deficient renal cell carcinoma and provide a rationale for further translational studies.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.