LSGI: interpretable spatial gradient analysis for spatial transcriptomics data

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Qingnan Liang, Luisa Solis Soto, Cara Haymaker, Ken Chen
{"title":"LSGI: interpretable spatial gradient analysis for spatial transcriptomics data","authors":"Qingnan Liang, Luisa Solis Soto, Cara Haymaker, Ken Chen","doi":"10.1186/s13059-025-03716-1","DOIUrl":null,"url":null,"abstract":"Cellular anatomy and signaling vary across niches, which can induce gradated gene expressions in subpopulations of cells. Such spatial transcriptomic gradient (STG) makes a significant source of intra-tumor heterogeneity. We present Local Spatial Gradient Inference (LSGI), a computational framework that systematically identifies spatial locations with prominent, interpretable STGs from spatial transcriptomic (ST) data. We demonstrate LSGI in tumor ST datasets and identify pan-cancer and tumor-type specific pathways with gradated patterns, highlighting the ones related to spatial transcriptional intratumoral heterogeneity. LSGI enables interpretable STG analysis, which can reveal novel insights in tumor biology from the increasingly reported tumor ST datasets.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"27 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03716-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cellular anatomy and signaling vary across niches, which can induce gradated gene expressions in subpopulations of cells. Such spatial transcriptomic gradient (STG) makes a significant source of intra-tumor heterogeneity. We present Local Spatial Gradient Inference (LSGI), a computational framework that systematically identifies spatial locations with prominent, interpretable STGs from spatial transcriptomic (ST) data. We demonstrate LSGI in tumor ST datasets and identify pan-cancer and tumor-type specific pathways with gradated patterns, highlighting the ones related to spatial transcriptional intratumoral heterogeneity. LSGI enables interpretable STG analysis, which can reveal novel insights in tumor biology from the increasingly reported tumor ST datasets.
空间转录组学数据的可解释空间梯度分析
细胞解剖和信号传导在不同的生态位中有所不同,这可以诱导细胞亚群中基因表达的梯度。这种空间转录组梯度(STG)是肿瘤内异质性的重要来源。我们提出了局部空间梯度推断(LSGI),这是一个计算框架,可以系统地从空间转录组学(ST)数据中识别具有突出的、可解释的stg的空间位置。我们在肿瘤ST数据集中展示了LSGI,并识别了泛癌和肿瘤类型特异性通路,这些通路具有分级模式,突出了与肿瘤内空间转录异质性相关的通路。LSGI支持可解释的STG分析,这可以从越来越多的肿瘤ST数据集中揭示肿瘤生物学的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信