{"title":"Probability-Based Early Warning for Seasonal Influenza in China: Model Development Study.","authors":"Jinzhao Cui, Ting Zhang, Yifeng Shen, Xiaoli Wang, Liuyang Yang, Xuefeng Huang, Qiang Huang, Yu Yang, Weizhong Yang, Zhongjie Li","doi":"10.2196/73631","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Seasonal influenza is a major global public health concern, leading to escalated morbidity and mortality rates. Traditional early warning models rely on binary (0/1) classification methods, which issue alerts only when predefined thresholds are crossed. However, these models exhibit inflexibility, often leading to false alarms or missed warnings and failing to provide granular risk assessments essential for decision-making. Therefore, we propose a probability-based early warning system using machine learning to mitigate these limitations and to offer continuous risk estimations of alerts (0-1 variable) instead of rigid threshold-based alerts. Based on probabilistic prediction, public health experts can make more flexible decisions in combination with the actual situation, significantly reducing the uncertainty and pressure in the decision-making process and reducing the waste of public health resources and the risk of social panic.</p><p><strong>Objective: </strong>The main aim of this study is to devise an innovative approach for early warning systems focused on influenza-like cases. Therefore, a Dense Residual Network (Dense ResNet), a supervised deep learning model, was developed. The model's training involved fitting the influenza-like illness positive rate, which enabled the early detection and warning of signals of changes occurring in the activity level of influenza-like cases. This departure from conventional methodologies underscores the transformative potential of machine learning, particularly in providing advanced capabilities for timely and proactive warnings in the context of influenza outbreaks.</p><p><strong>Methods: </strong>We developed a Dense ResNet machine learning model trained on influenza surveillance data from Northern and Southern China (2014-2024). This model generates early warning signals 3, 5, and 7 days in advance, providing a probability-based risk assessment represented as a continuous variable ranging from 0 to 1, in contrast to the traditional binary (0/1) warning systems. We evaluated the performance of this model using area under the curve scores, accuracy, recall, and F1-scores, then compared it with support vector machine (SVM), random forests, XGBoost (Extreme Gradient Boosting), and LSTM (long short-term memory) models.</p><p><strong>Results: </strong>The Dense ResNet model demonstrated the best performance, characterized by 5-day lead warnings and a 50th percentile probability threshold, achieving area under the curve scores of 0.94 (Northern China) and 0.95 (Southern China). Relative to traditional models, probability-based warning signals improved early detection, reduced false alarms, and facilitated tiered public health responses.</p><p><strong>Conclusions: </strong>This study presented a novel probability-based machine learning model essential for early warning signals of influenza, demonstrating superior accuracy, flexibility, and practical applicability compared to other techniques. This approach enhances preparedness for influenza among the population and promotes the use of automated artificial intelligence-driven public health responses by replacing binary warnings with probability-driven risk assessments. Future research should integrate real-time surveillance data and dynamic transmission models to improve the precision of early warning.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e73631"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12327961/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/73631","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Seasonal influenza is a major global public health concern, leading to escalated morbidity and mortality rates. Traditional early warning models rely on binary (0/1) classification methods, which issue alerts only when predefined thresholds are crossed. However, these models exhibit inflexibility, often leading to false alarms or missed warnings and failing to provide granular risk assessments essential for decision-making. Therefore, we propose a probability-based early warning system using machine learning to mitigate these limitations and to offer continuous risk estimations of alerts (0-1 variable) instead of rigid threshold-based alerts. Based on probabilistic prediction, public health experts can make more flexible decisions in combination with the actual situation, significantly reducing the uncertainty and pressure in the decision-making process and reducing the waste of public health resources and the risk of social panic.
Objective: The main aim of this study is to devise an innovative approach for early warning systems focused on influenza-like cases. Therefore, a Dense Residual Network (Dense ResNet), a supervised deep learning model, was developed. The model's training involved fitting the influenza-like illness positive rate, which enabled the early detection and warning of signals of changes occurring in the activity level of influenza-like cases. This departure from conventional methodologies underscores the transformative potential of machine learning, particularly in providing advanced capabilities for timely and proactive warnings in the context of influenza outbreaks.
Methods: We developed a Dense ResNet machine learning model trained on influenza surveillance data from Northern and Southern China (2014-2024). This model generates early warning signals 3, 5, and 7 days in advance, providing a probability-based risk assessment represented as a continuous variable ranging from 0 to 1, in contrast to the traditional binary (0/1) warning systems. We evaluated the performance of this model using area under the curve scores, accuracy, recall, and F1-scores, then compared it with support vector machine (SVM), random forests, XGBoost (Extreme Gradient Boosting), and LSTM (long short-term memory) models.
Results: The Dense ResNet model demonstrated the best performance, characterized by 5-day lead warnings and a 50th percentile probability threshold, achieving area under the curve scores of 0.94 (Northern China) and 0.95 (Southern China). Relative to traditional models, probability-based warning signals improved early detection, reduced false alarms, and facilitated tiered public health responses.
Conclusions: This study presented a novel probability-based machine learning model essential for early warning signals of influenza, demonstrating superior accuracy, flexibility, and practical applicability compared to other techniques. This approach enhances preparedness for influenza among the population and promotes the use of automated artificial intelligence-driven public health responses by replacing binary warnings with probability-driven risk assessments. Future research should integrate real-time surveillance data and dynamic transmission models to improve the precision of early warning.
期刊介绍:
JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.
Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.