{"title":"A 2025 perspective on the role of machine learning for biomarker discovery in clinical proteomics.","authors":"Charlotte Adams, Wout Bittremieux","doi":"10.1080/14789450.2025.2545828","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Machine learning holds significant promise for accelerating biomarker discovery in clinical proteomics, yet its real-world impact remains limited by widespread methodological pitfalls and unrealistic expectations.</p><p><strong>Areas covered: </strong>In this perspective, we critically examine the application of machine learning for biomarker discovery in clinical proteomics, emphasizing that algorithmic novelty alone cannot compensate for issues such as small sample sizes, batch effects, overfitting, data leakage, and poor model generalization.</p><p><strong>Expert opinion: </strong>We caution against the uncritical application of complex models, such as deep learning architectures, that often exacerbate these problems, offering limited interpretability and negligible performance gains in typical clinical proteomics datasets. Instead, we advocate for the realistic and responsible use of machine learning, grounded in rigorous study design, appropriate validation strategies, and transparent, reproducible modeling practices. Emphasizing simplicity, interpretability, and domain awareness over hype-driven complexity is essential if machine learning is to fulfill its translational potential in the clinic.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":"1-12"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/14789450.2025.2545828","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Machine learning holds significant promise for accelerating biomarker discovery in clinical proteomics, yet its real-world impact remains limited by widespread methodological pitfalls and unrealistic expectations.
Areas covered: In this perspective, we critically examine the application of machine learning for biomarker discovery in clinical proteomics, emphasizing that algorithmic novelty alone cannot compensate for issues such as small sample sizes, batch effects, overfitting, data leakage, and poor model generalization.
Expert opinion: We caution against the uncritical application of complex models, such as deep learning architectures, that often exacerbate these problems, offering limited interpretability and negligible performance gains in typical clinical proteomics datasets. Instead, we advocate for the realistic and responsible use of machine learning, grounded in rigorous study design, appropriate validation strategies, and transparent, reproducible modeling practices. Emphasizing simplicity, interpretability, and domain awareness over hype-driven complexity is essential if machine learning is to fulfill its translational potential in the clinic.
期刊介绍:
Expert Review of Proteomics (ISSN 1478-9450) seeks to collect together technologies, methods and discoveries from the field of proteomics to advance scientific understanding of the many varied roles protein expression plays in human health and disease.
The journal coverage includes, but is not limited to, overviews of specific technological advances in the development of protein arrays, interaction maps, data archives and biological assays, performance of new technologies and prospects for future drug discovery.
The journal adopts the unique Expert Review article format, offering a complete overview of current thinking in a key technology area, research or clinical practice, augmented by the following sections:
Expert Opinion - a personal view on the most effective or promising strategies and a clear perspective of future prospects within a realistic timescale
Article highlights - an executive summary cutting to the author''s most critical points.