Calculation of DNA damage at different depths of proton SOBP based on a new method and its applications.

IF 3.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Xianghui Kong, Kaijin Yan, Xinjie Wang, Shenglan Wei, Jie Ni, Haiyang Li, Songbing Qin, Liang Sun
{"title":"Calculation of DNA damage at different depths of proton SOBP based on a new method and its applications.","authors":"Xianghui Kong, Kaijin Yan, Xinjie Wang, Shenglan Wei, Jie Ni, Haiyang Li, Songbing Qin, Liang Sun","doi":"10.1088/1361-6560/adf8aa","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>In examining the biological effects of proton radiation, DNA is the primary sensitive target. This study utilizes Monte Carlo simulations to efficiently calculate DNA damage yields at various proton depths to analyze the biological effects of protons and their variability on different scales.<i>Approach.</i>A new method, the 'Coefficient Method' is used to replace the complete chemical processes by adjusting parameters to obtain suitable values for simulating DNA damage yields at different spread-out Bragg peak (SOBP) depths of low-energy protons, and these parameters are then applied to high-energy proton simulations based on a mesh-type cell model. We computed two relative biological effectiveness (RBE) at two different scales:RBEmax(at 0 Gy per fraction) andRBEDSB(based on DNA damage yields).<i>Main results</i>. The results confirm the feasibility of the 'Coefficient Method,' with deviations inYDSBs(the yields of double-strand breaks (DSBs)) andYDSBc(the yields of complex DSBs) ranging from 0.60%-3.79% and 1.45%-4.1%, respectively, and a clear advantage in simulation efficiency. For high-energy protons,YSSBs(the yields of single-strand breaks) decreases with depth, whileYDSBsandYDSBcincrease. What's more, the differences in RBE across different scales are substantial. At 1 cm depth for 70_SOBP MeV protons,RBEmaxis 1.53 vsRBEDSBof 1.45; at the beam end,RBEmaxreaches 10.45 vsRBEDSBof 2.36. Mesh thickness has negligible impact onRBEmax.<i>Significance.</i>It is confirmed that using the 'Coefficient Method' to obtain DNA damage yields at different depths for high-energy protons is reliable. TheRBEDSBvalues based on this method show significant differences compared to the traditionalRBEmaxvalues. This indicates the importance of investigating the biological effects of proton radiation at the DNA scale and further emphasizes the significance of exploring the relationship between proton radiation quality and the target of interest.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adf8aa","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.In examining the biological effects of proton radiation, DNA is the primary sensitive target. This study utilizes Monte Carlo simulations to efficiently calculate DNA damage yields at various proton depths to analyze the biological effects of protons and their variability on different scales.Approach.A new method, the 'Coefficient Method' is used to replace the complete chemical processes by adjusting parameters to obtain suitable values for simulating DNA damage yields at different spread-out Bragg peak (SOBP) depths of low-energy protons, and these parameters are then applied to high-energy proton simulations based on a mesh-type cell model. We computed two relative biological effectiveness (RBE) at two different scales:RBEmax(at 0 Gy per fraction) andRBEDSB(based on DNA damage yields).Main results. The results confirm the feasibility of the 'Coefficient Method,' with deviations inYDSBs(the yields of double-strand breaks (DSBs)) andYDSBc(the yields of complex DSBs) ranging from 0.60%-3.79% and 1.45%-4.1%, respectively, and a clear advantage in simulation efficiency. For high-energy protons,YSSBs(the yields of single-strand breaks) decreases with depth, whileYDSBsandYDSBcincrease. What's more, the differences in RBE across different scales are substantial. At 1 cm depth for 70_SOBP MeV protons,RBEmaxis 1.53 vsRBEDSBof 1.45; at the beam end,RBEmaxreaches 10.45 vsRBEDSBof 2.36. Mesh thickness has negligible impact onRBEmax.Significance.It is confirmed that using the 'Coefficient Method' to obtain DNA damage yields at different depths for high-energy protons is reliable. TheRBEDSBvalues based on this method show significant differences compared to the traditionalRBEmaxvalues. This indicates the importance of investigating the biological effects of proton radiation at the DNA scale and further emphasizes the significance of exploring the relationship between proton radiation quality and the target of interest.

基于质子SOBP不同深度下DNA损伤计算的新方法及其应用。
目的:在研究质子辐射的生物学效应时,DNA是主要的敏感靶点。本研究利用蒙特卡罗模拟有效地计算了不同质子深度下的DNA损伤产率,以分析质子的生物效应及其在不同尺度上的可变性。方法:采用“系数法”这一新的方法,通过调整参数来替代完整的化学过程,得到合适的数值来模拟不同SOBP深度下低能质子的DNA损伤产率,并将这些参数应用于基于网格型细胞模型的高能质子模拟。我们在两个不同的尺度上计算了两个RBE: RBE_max(每分数0 Gy)和RBE_DSB(基于DNA损伤产率)。主要结果:结果证实了“系数法”的可行性,y_dsb(双链断裂得率)和Y_DSBc(复杂双链断裂得率)的偏差分别在0.60% ~ 3.79%和1.45% ~ 4.1%之间,在模拟效率上具有明显优势。对于高能质子,单链断裂产率Y_SSBs随深度的增加而降低,而Y_DSBs和Y_DSBc则增加。更重要的是,RBE在不同量表上的差异是巨大的。70_SOBP MeV质子在1 cm深度,RBEmax为1.53,RBE_DSB为1.45;波束端RBE_max为10.45,RBE_DSB为2.36。网格厚度对RBEmax的影响可以忽略不计。意义:证实利用“系数法”获得高能质子在不同深度下的DNA损伤产额是可靠的。基于该方法的RBE_DSB值与传统的RBEmax值相比有显著差异。这表明了在DNA尺度上研究质子辐射的生物学效应的重要性,并进一步强调了探索质子辐射质量与感兴趣靶点之间关系的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信