Multidisciplinary study of thorium mobility: formation of turkestanite and steacyite analogues, and structural insights using an XRD-directed microcrystal preparation technique.
M Stachowicz, B Bagiński, D E Harlov, P Jokubauskas, J Kotowski, W Matyszczak, A Dąbrowska, R Macdonald
{"title":"Multidisciplinary study of thorium mobility: formation of turkestanite and steacyite analogues, and structural insights using an XRD-directed microcrystal preparation technique.","authors":"M Stachowicz, B Bagiński, D E Harlov, P Jokubauskas, J Kotowski, W Matyszczak, A Dąbrowska, R Macdonald","doi":"10.1107/S2052520625004822","DOIUrl":null,"url":null,"abstract":"<p><p>Minerals of the ekanite group typically contain Th, U or REE (rare earth elements) as primary structural constituents. The <sup>C</sup>Na analogues of turkestanite, <sup>A</sup>Th<sup>B</sup>(Ca,Na)<sup>C</sup>(K<sub>1-x</sub>□<sub>x</sub>)<sup>T</sup>(Si<sub>8</sub>O<sub>20</sub>) (□ is vacancy), and steacyite, <sup>A</sup>Th<sup>B</sup>(Ca,Na)<sup>C</sup>(K<sub>1-x</sub>□<sub>x</sub>)<sup>T</sup>(Si<sub>8</sub>O<sub>20</sub>), isostructural minerals of the ekanite group, were experimentally synthesized during hydrothermal alteration of chevkinite-(Ce). The experiment was conducted at 550°C, 200 MPa, at an oxygen fugacity approximately equivalent to the Ni-NiO (NNO) buffer with NaF and Ca(PO<sub>4</sub>)<sub>2</sub> added to the hydrous fluid. Both phases formed as a replacement of chevkinite-(Ce) and earlier alteration products. Their identity was confirmed by electron probe microanalysis and electron backscatter diffraction as <sup>C</sup>Na analogues of turkestanite and steacyite. Further SCXRD, and Raman spectroscopy analyses confirmed that it is a new <sup>C</sup>Na analogue with respect to the ekanite mineral group. Raman spectroscopy revealed the presence of H<sub>2</sub>O within the crystal structure. A dedicated FIB workflow was designed to extract single crystals ready for SCXRD analysis. Compositionally, the phase is Na rich and depleted in K, REE and Fe. The mean formula based on 20 O atoms can be written as <sup>A</sup>(Th<sub>0.94</sub>U<sub>0.03</sub>)<sub>0.97</sub><sup>B</sup>(Na<sub>0.96</sub>Ca<sub>0.90</sub>Mn<sub>0.11</sub>Ce<sub>0.02</sub>Nd<sub>0.01</sub>Fe<sub>0.01</sub>)<sub>2.0</sub><sup>C</sup>(Na<sub>0.83</sub>K<sub>0.07</sub>)<sub>0.9</sub><sup>T</sup>Si<sub>8.05</sub>O<sub>20</sub>·0.1<sup>C</sup>(H<sub>2</sub>O). It crystallizes in space group P4/mcc with a = 7.4757 (2) Å, c = 14.9658 (7) Å, V = 836.38 (6) Å<sup>3</sup>, and Z = 2. Compositional variation is represented mainly by the relationship Ca<sup>2+</sup> + □ → 2Na<sup>+</sup>, where □ is a vacancy which can also be filled by H<sub>2</sub>O during crystallization. The synthesis from this study represents the first record of <sup>C</sup>Na analogues of turkestanite and steacyite. A dedicated microcrystal selection technique is presented allowing for easy single-crystal X-ray diffraction.</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":"81 Pt 4","pages":"418-426"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12322933/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica Section B, Structural science, crystal engineering and materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S2052520625004822","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Minerals of the ekanite group typically contain Th, U or REE (rare earth elements) as primary structural constituents. The CNa analogues of turkestanite, AThB(Ca,Na)C(K1-x□x)T(Si8O20) (□ is vacancy), and steacyite, AThB(Ca,Na)C(K1-x□x)T(Si8O20), isostructural minerals of the ekanite group, were experimentally synthesized during hydrothermal alteration of chevkinite-(Ce). The experiment was conducted at 550°C, 200 MPa, at an oxygen fugacity approximately equivalent to the Ni-NiO (NNO) buffer with NaF and Ca(PO4)2 added to the hydrous fluid. Both phases formed as a replacement of chevkinite-(Ce) and earlier alteration products. Their identity was confirmed by electron probe microanalysis and electron backscatter diffraction as CNa analogues of turkestanite and steacyite. Further SCXRD, and Raman spectroscopy analyses confirmed that it is a new CNa analogue with respect to the ekanite mineral group. Raman spectroscopy revealed the presence of H2O within the crystal structure. A dedicated FIB workflow was designed to extract single crystals ready for SCXRD analysis. Compositionally, the phase is Na rich and depleted in K, REE and Fe. The mean formula based on 20 O atoms can be written as A(Th0.94U0.03)0.97B(Na0.96Ca0.90Mn0.11Ce0.02Nd0.01Fe0.01)2.0C(Na0.83K0.07)0.9TSi8.05O20·0.1C(H2O). It crystallizes in space group P4/mcc with a = 7.4757 (2) Å, c = 14.9658 (7) Å, V = 836.38 (6) Å3, and Z = 2. Compositional variation is represented mainly by the relationship Ca2+ + □ → 2Na+, where □ is a vacancy which can also be filled by H2O during crystallization. The synthesis from this study represents the first record of CNa analogues of turkestanite and steacyite. A dedicated microcrystal selection technique is presented allowing for easy single-crystal X-ray diffraction.
期刊介绍:
Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials publishes scientific articles related to the structural science of compounds and materials in the widest sense. Knowledge of the arrangements of atoms, including their temporal variations and dependencies on temperature and pressure, is often the key to understanding physical and chemical phenomena and is crucial for the design of new materials and supramolecular devices. Acta Crystallographica B is the forum for the publication of such contributions. Scientific developments based on experimental studies as well as those based on theoretical approaches, including crystal-structure prediction, structure-property relations and the use of databases of crystal structures, are published.