Xueqin Fu, Zhiqin Zhu, Peipei Yin, Yi Yang, Yunhong Huang, Zhong-er Long, Zhiming Wu, Long Zou, Haiyan Ni
{"title":"Exiguobacterium mexicanum PY14 Reduces Toxic Selenite to Elemental Selenium: Characterization and Mechanism","authors":"Xueqin Fu, Zhiqin Zhu, Peipei Yin, Yi Yang, Yunhong Huang, Zhong-er Long, Zhiming Wu, Long Zou, Haiyan Ni","doi":"10.1002/biot.70096","DOIUrl":null,"url":null,"abstract":"<p>Microbial reduction of toxic Se(IV) oxyanions to biogenic Se(0) has garnered considerable attention for detoxification. This study presents a comprehensive investigation of Se(IV) reduction by environmentally versatile <i>Exiguobacterium</i> genus through integrated physicochemical, genomic, and transcriptomic analyses. <i>Exiguobacterium mexicanum</i> PY14 demonstrated remarkable efficiency, reducing ∼1 mM selenite to extracellular Se(0) within 12 h under aerobic conditions, with broad adaptability to pH (7–9), temperature (30–37°C), and salinity (up to 40 g L<sup>−1</sup> NaCl). The produced Se(0) revealed crystalline nanoaggregates with biomolecular coatings. Genomic sequencing identified a chromosome and six plasmids enriched with genes for carbohydrate metabolism, inorganic ion transport, and mobile genetic elements. Transcriptomic profiling under Se(IV) stress unveiled a coordinated stress response: up-regulation of catabolic pathways (glycolysis and citric acid cycle) for energy and NAD(P)H production, bacterial motility, and chemotaxis, alongside down-regulation of energy-intensive biosynthetic processes. Notably, genes for glutathione biosynthesis (<i>gsh</i>), NAD(P)H generation (<i>gntZ</i>), and ROS scavenging (<i>btuE</i>) were significantly up-regulated, along with the evidence of increased GSH levels, implicating a GSH-dependent detoxification pathway driving Se(IV) reduction. These findings deepen mechanistic understanding of Se(IV) reduction mechanism within the understudied <i>Exiguobacterium</i> genus, and the strain's haloalkaliphilic trait underscores its potential for bioremediating Se(IV)-contaminated saline-alkaline environments.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"20 8","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/biot.70096","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial reduction of toxic Se(IV) oxyanions to biogenic Se(0) has garnered considerable attention for detoxification. This study presents a comprehensive investigation of Se(IV) reduction by environmentally versatile Exiguobacterium genus through integrated physicochemical, genomic, and transcriptomic analyses. Exiguobacterium mexicanum PY14 demonstrated remarkable efficiency, reducing ∼1 mM selenite to extracellular Se(0) within 12 h under aerobic conditions, with broad adaptability to pH (7–9), temperature (30–37°C), and salinity (up to 40 g L−1 NaCl). The produced Se(0) revealed crystalline nanoaggregates with biomolecular coatings. Genomic sequencing identified a chromosome and six plasmids enriched with genes for carbohydrate metabolism, inorganic ion transport, and mobile genetic elements. Transcriptomic profiling under Se(IV) stress unveiled a coordinated stress response: up-regulation of catabolic pathways (glycolysis and citric acid cycle) for energy and NAD(P)H production, bacterial motility, and chemotaxis, alongside down-regulation of energy-intensive biosynthetic processes. Notably, genes for glutathione biosynthesis (gsh), NAD(P)H generation (gntZ), and ROS scavenging (btuE) were significantly up-regulated, along with the evidence of increased GSH levels, implicating a GSH-dependent detoxification pathway driving Se(IV) reduction. These findings deepen mechanistic understanding of Se(IV) reduction mechanism within the understudied Exiguobacterium genus, and the strain's haloalkaliphilic trait underscores its potential for bioremediating Se(IV)-contaminated saline-alkaline environments.
Biotechnology JournalBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍:
Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances.
In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office.
BTJ promotes a special emphasis on:
Systems Biotechnology
Synthetic Biology and Metabolic Engineering
Nanobiotechnology and Biomaterials
Tissue engineering, Regenerative Medicine and Stem cells
Gene Editing, Gene therapy and Immunotherapy
Omics technologies
Industrial Biotechnology, Biopharmaceuticals and Biocatalysis
Bioprocess engineering and Downstream processing
Plant Biotechnology
Biosafety, Biotech Ethics, Science Communication
Methods and Advances.