Kashala Fabrice Kapiamba, Hsin-Yin Chuang, Weixing Hao, Ta-Chun Lin, Lung-Chi Chen, Yue-Wern Huang and Yang Wang*,
{"title":"Evaluating the Toxicity of Electronic Cigarette Aerosols for Firsthand and Secondhand Exposure Under Different Device Operating Conditions","authors":"Kashala Fabrice Kapiamba, Hsin-Yin Chuang, Weixing Hao, Ta-Chun Lin, Lung-Chi Chen, Yue-Wern Huang and Yang Wang*, ","doi":"10.1021/acs.chemrestox.5c00064","DOIUrl":null,"url":null,"abstract":"<p >The rapid proliferation of electronic cigarettes (ECs) has raised significant concerns about their potential health effects on both users and bystanders. This study systematically investigates the impact of EC aerosol exposure on human alveolar epithelial cells (A549), considering variations in device parameters, nicotine concentration, and exposure type. Using a gravity-based air–liquid interface exposure system, we assessed cytotoxicity and epithelial barrier integrity by measuring cell viability and transepithelial electrical resistance (TEER). Our results indicate that EC aerosol exposure significantly reduces cell viability and disrupts monolayer integrity in a dose- and device-dependent manner. Notably, VUSE (pod-type) exposure led to a 16% decrease in viability and a 41% reduction in TEER, while VOOPOO (mod-type) exposure caused a 25% viability loss and a 61% reduction in TEER. Power settings played a critical role: at 60 W, cell viability dropped by 48% at 12 mg/mL nicotine concentration compared to 29% at 0 mg/mL. Moreover, under the same number of puffs (30 puffs), firsthand exposure resulted in a 73% viability decrease, whereas secondhand exposure showed a 47% reduction, indicating substantial bystander risks associated with EC usage. These findings underscore the importance of device specifications and exposure conditions in determining EC aerosol toxicity. The observed epithelial barrier disruption suggests increased vulnerability to respiratory diseases. Given the comparable toxicity of firsthand and secondhand aerosols, regulatory measures should extend beyond direct users to include bystander protection. This study highlights the urgent need for comprehensive toxicity assessments to inform public health policies on EC use.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"38 8","pages":"1344–1356"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrestox.5c00064","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid proliferation of electronic cigarettes (ECs) has raised significant concerns about their potential health effects on both users and bystanders. This study systematically investigates the impact of EC aerosol exposure on human alveolar epithelial cells (A549), considering variations in device parameters, nicotine concentration, and exposure type. Using a gravity-based air–liquid interface exposure system, we assessed cytotoxicity and epithelial barrier integrity by measuring cell viability and transepithelial electrical resistance (TEER). Our results indicate that EC aerosol exposure significantly reduces cell viability and disrupts monolayer integrity in a dose- and device-dependent manner. Notably, VUSE (pod-type) exposure led to a 16% decrease in viability and a 41% reduction in TEER, while VOOPOO (mod-type) exposure caused a 25% viability loss and a 61% reduction in TEER. Power settings played a critical role: at 60 W, cell viability dropped by 48% at 12 mg/mL nicotine concentration compared to 29% at 0 mg/mL. Moreover, under the same number of puffs (30 puffs), firsthand exposure resulted in a 73% viability decrease, whereas secondhand exposure showed a 47% reduction, indicating substantial bystander risks associated with EC usage. These findings underscore the importance of device specifications and exposure conditions in determining EC aerosol toxicity. The observed epithelial barrier disruption suggests increased vulnerability to respiratory diseases. Given the comparable toxicity of firsthand and secondhand aerosols, regulatory measures should extend beyond direct users to include bystander protection. This study highlights the urgent need for comprehensive toxicity assessments to inform public health policies on EC use.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.