scplainer: using linear models to understand mass spectrometry-based single-cell proteomics data

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Christophe Vanderaa, Laurent Gatto
{"title":"scplainer: using linear models to understand mass spectrometry-based single-cell proteomics data","authors":"Christophe Vanderaa, Laurent Gatto","doi":"10.1186/s13059-025-03713-4","DOIUrl":null,"url":null,"abstract":"Analyzing mass spectrometry (MS)-based single-cell proteomics (SCP) data faces important challenges inherent to MS-based technologies and single-cell experiments. We present scplainer, a principled and standardized approach for extracting meaningful insights from SCP data using minimal data processing and linear modeling. scplainer performs variance analysis, differential abundance analysis, and component analysis while streamlining result visualization. scplainer effectively corrects for technical variability, enabling the integration of data sets from different SCP experiments. In conclusion, this work reshapes the analysis of SCP data by moving efforts from dealing with the technical aspects of data analysis to focusing on answering biologically relevant questions.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"6 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03713-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Analyzing mass spectrometry (MS)-based single-cell proteomics (SCP) data faces important challenges inherent to MS-based technologies and single-cell experiments. We present scplainer, a principled and standardized approach for extracting meaningful insights from SCP data using minimal data processing and linear modeling. scplainer performs variance analysis, differential abundance analysis, and component analysis while streamlining result visualization. scplainer effectively corrects for technical variability, enabling the integration of data sets from different SCP experiments. In conclusion, this work reshapes the analysis of SCP data by moving efforts from dealing with the technical aspects of data analysis to focusing on answering biologically relevant questions.
解释:使用线性模型来理解基于质谱的单细胞蛋白质组学数据
分析基于质谱(MS)的单细胞蛋白质组学(SCP)数据面临着基于质谱的技术和单细胞实验固有的重要挑战。我们提出了scplainer,一种原则性和标准化的方法,用于使用最小的数据处理和线性建模从SCP数据中提取有意义的见解。Scplainer执行方差分析、差分丰度分析和成分分析,同时简化结果可视化。scplainer有效地纠正了技术变异性,使来自不同SCP实验的数据集能够整合。总之,这项工作通过将努力从处理数据分析的技术方面转移到专注于回答生物学相关问题来重塑SCP数据的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信