Tyler C. Coverdale, Peter B. Boucher, Jenia Singh, Andrew B. Davies
{"title":"Quantifying aboveground herbaceous biomass in grassy ecosystems: a comparison of field and high‐resolution UAV‐LiDAR approaches","authors":"Tyler C. Coverdale, Peter B. Boucher, Jenia Singh, Andrew B. Davies","doi":"10.1002/rse2.70023","DOIUrl":null,"url":null,"abstract":"Grassy ecosystems cover >25% of the world's land surface area. The abundance of herbaceous vegetation in these systems directly impacts a variety of ecological processes, including carbon sequestration, regulation of water and nutrient cycling, and support of grazing wildlife and livestock. Efforts to quantify herbaceous biomass, however, are often limited by a trade‐off between accuracy and spatial scale. Here, we describe a method for using Light Detection and Ranging (LiDAR) to estimate continuous aboveground biomass (AGB) at sub‐meter resolutions over large (10–10 000 ha) spatial scales. Across two African savanna ecosystems, we compared field‐ and LiDAR‐derived structural metrics—including measures of vegetation height and volume—with destructively harvested AGB by aligning our geospatial data with the location of harvested quadrats. Using this combination of approaches, we develop scaling equations to estimate spatially continuous herbaceous AGB over large areas. We demonstrate the utility of this method using a long‐term, large herbivore exclosure experiment as a case study and comprehensively compare common field‐ and LiDAR‐derived metrics for estimating herbaceous AGB. Our results indicate that UAV‐borne LiDAR provides comparable accuracy to standard field methods but over considerably larger areas. Nearly every measure of vegetation structure we quantified using LiDAR provided estimates of AGB that were comparable in accuracy (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> > 0.6) to the suite of common field methods we evaluated. However, marked differences between our two sites indicate that, for applications where accurate estimation of absolute biomass is a priority, site‐specific parameterization with destructive harvesting is necessary regardless of methodology. With the increasing availability of high‐resolution remote sensing data globally, our results indicate that many measures of herbaceous vegetation structure can be used to accurately compare AGB, even in the absence of complementary field data.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"15 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.70023","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Grassy ecosystems cover >25% of the world's land surface area. The abundance of herbaceous vegetation in these systems directly impacts a variety of ecological processes, including carbon sequestration, regulation of water and nutrient cycling, and support of grazing wildlife and livestock. Efforts to quantify herbaceous biomass, however, are often limited by a trade‐off between accuracy and spatial scale. Here, we describe a method for using Light Detection and Ranging (LiDAR) to estimate continuous aboveground biomass (AGB) at sub‐meter resolutions over large (10–10 000 ha) spatial scales. Across two African savanna ecosystems, we compared field‐ and LiDAR‐derived structural metrics—including measures of vegetation height and volume—with destructively harvested AGB by aligning our geospatial data with the location of harvested quadrats. Using this combination of approaches, we develop scaling equations to estimate spatially continuous herbaceous AGB over large areas. We demonstrate the utility of this method using a long‐term, large herbivore exclosure experiment as a case study and comprehensively compare common field‐ and LiDAR‐derived metrics for estimating herbaceous AGB. Our results indicate that UAV‐borne LiDAR provides comparable accuracy to standard field methods but over considerably larger areas. Nearly every measure of vegetation structure we quantified using LiDAR provided estimates of AGB that were comparable in accuracy (R2 > 0.6) to the suite of common field methods we evaluated. However, marked differences between our two sites indicate that, for applications where accurate estimation of absolute biomass is a priority, site‐specific parameterization with destructive harvesting is necessary regardless of methodology. With the increasing availability of high‐resolution remote sensing data globally, our results indicate that many measures of herbaceous vegetation structure can be used to accurately compare AGB, even in the absence of complementary field data.
期刊介绍:
emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students.
Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.