Qinhua Li, Dan Liu, Kunyao Li, Jing Li, Yongxia Zhou
{"title":"Artificial Intelligence Iterative Reconstruction Algorithm Combined with Low-Dose Aortic CTA for Preoperative Access Assessment of Transcatheter Aortic Valve Implantation: A Prospective Cohort Study.","authors":"Qinhua Li, Dan Liu, Kunyao Li, Jing Li, Yongxia Zhou","doi":"10.1007/s10278-025-01622-3","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to explore whether an artificial intelligence iterative reconstruction (AIIR) algorithm combined with low-dose aortic computed tomography angiography (CTA) demonstrates clinical effectiveness in assessing preoperative access for transcatheter aortic valve implantation (TAVI). A total of 109 patients were prospectively recruited for aortic CTA scans and divided into two groups: group A (n = 51) with standard-dose CT examinations (SDCT) and group B (n = 58) with low-dose CT examinations (LDCT). Group B was further subdivided into groups B1 and B2. Groups A and B2 used the hybrid iterative algorithm (HIR: Karl 3D), whereas Group B1 used the AIIR algorithm. CT attenuation and noise of different vessel segments were measured, and the contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) were calculated. Two radiologists, who were blinded to the study details, rated the subjective image quality on a 5-point scale. The effective radiation doses were also recorded for groups A and B. Group B1 demonstrated the highest CT attenuation, SNR, and CNR and the lowest image noise among the three groups (p < 0.05). The scores of subjective image noise, vessel and non-calcified plaque edge sharpness, and overall image quality in Group B1 were higher than those in groups A and B2 (p < 0.001). Group B2 had the highest artifacts scores compared with groups A and B1 (p < 0.05). The radiation dose in group B was reduced by 50.33% compared with that in group A (p < 0.001). The AIIR algorithm combined with low-dose CTA yielded better diagnostic images before TAVI than the Karl 3D algorithm.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01622-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to explore whether an artificial intelligence iterative reconstruction (AIIR) algorithm combined with low-dose aortic computed tomography angiography (CTA) demonstrates clinical effectiveness in assessing preoperative access for transcatheter aortic valve implantation (TAVI). A total of 109 patients were prospectively recruited for aortic CTA scans and divided into two groups: group A (n = 51) with standard-dose CT examinations (SDCT) and group B (n = 58) with low-dose CT examinations (LDCT). Group B was further subdivided into groups B1 and B2. Groups A and B2 used the hybrid iterative algorithm (HIR: Karl 3D), whereas Group B1 used the AIIR algorithm. CT attenuation and noise of different vessel segments were measured, and the contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) were calculated. Two radiologists, who were blinded to the study details, rated the subjective image quality on a 5-point scale. The effective radiation doses were also recorded for groups A and B. Group B1 demonstrated the highest CT attenuation, SNR, and CNR and the lowest image noise among the three groups (p < 0.05). The scores of subjective image noise, vessel and non-calcified plaque edge sharpness, and overall image quality in Group B1 were higher than those in groups A and B2 (p < 0.001). Group B2 had the highest artifacts scores compared with groups A and B1 (p < 0.05). The radiation dose in group B was reduced by 50.33% compared with that in group A (p < 0.001). The AIIR algorithm combined with low-dose CTA yielded better diagnostic images before TAVI than the Karl 3D algorithm.