Mickael Palmier, Sylvain Fraineau, Angela Sutton, Hanna Hlawaty, Jeremy Bellien, Didier Plissonnier
{"title":"The pathophysiology of acute lung injury following intestinal ischemia-reperfusion.","authors":"Mickael Palmier, Sylvain Fraineau, Angela Sutton, Hanna Hlawaty, Jeremy Bellien, Didier Plissonnier","doi":"10.1152/ajplung.00052.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Acute mesenteric ischemia (AMI) is a severe and life-threatening condition with a mortality rate of up to 50%. Its treatment, which depends on the etiology, focuses on preserving intestinal viability through prompt restoration of blood flow. Although it is well established that intestinal ischemia-reperfusion results in significant local tissue damage, it is less recognized that it can also lead to remote tissue injuries, particularly in the lungs. Acute lung injury following intestinal ischemia-reperfusion is a severe complication that affects nearly 30% of patients with acute mesenteric ischemia and significantly contributes to mortality. The underlying pathophysiology of this injury is complex and multifactorial, yet it remains poorly understood. Neutrophil-endothelial interactions, regulated by both systemic and local mediators, play a pivotal role. Among the contributing factors, the intestinal ischemia-reperfusion process itself appears to be the most significant. Reperfusion of the ischemic intestine allows the release of mediators generated during ischemia into the systemic circulation. This triggers a cascade of biological events, including elevated levels of proinflammatory cytokines, overproduction of reactive oxygen species (ROS), nitric oxide imbalance, neutrophil activation, mitochondrial damage, and the initiation of cell death pathways. Here, we review the current knowledge on the various pathophysiological pathways explored in clinical and animal models of acute lung injury induced by intestinal ischemia-reperfusion, with the aim of providing therapeutic insights.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L397-L418"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00052.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute mesenteric ischemia (AMI) is a severe and life-threatening condition with a mortality rate of up to 50%. Its treatment, which depends on the etiology, focuses on preserving intestinal viability through prompt restoration of blood flow. Although it is well established that intestinal ischemia-reperfusion results in significant local tissue damage, it is less recognized that it can also lead to remote tissue injuries, particularly in the lungs. Acute lung injury following intestinal ischemia-reperfusion is a severe complication that affects nearly 30% of patients with acute mesenteric ischemia and significantly contributes to mortality. The underlying pathophysiology of this injury is complex and multifactorial, yet it remains poorly understood. Neutrophil-endothelial interactions, regulated by both systemic and local mediators, play a pivotal role. Among the contributing factors, the intestinal ischemia-reperfusion process itself appears to be the most significant. Reperfusion of the ischemic intestine allows the release of mediators generated during ischemia into the systemic circulation. This triggers a cascade of biological events, including elevated levels of proinflammatory cytokines, overproduction of reactive oxygen species (ROS), nitric oxide imbalance, neutrophil activation, mitochondrial damage, and the initiation of cell death pathways. Here, we review the current knowledge on the various pathophysiological pathways explored in clinical and animal models of acute lung injury induced by intestinal ischemia-reperfusion, with the aim of providing therapeutic insights.
期刊介绍:
The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.