A Stabilized Nonconforming Finite Element Method for the Surface Biharmonic Problem

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Shuonan Wu, Hao Zhou
{"title":"A Stabilized Nonconforming Finite Element Method for the Surface Biharmonic Problem","authors":"Shuonan Wu, Hao Zhou","doi":"10.1137/24m1707936","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1642-1665, August 2025. <br/> Abstract. This paper presents a novel stabilized nonconforming finite element method for solving the surface biharmonic problem. The method extends the New-Zienkiewicz-type (NZT) element to polyhedral (approximated) surfaces by employing the Piola transform to establish the connection of vertex gradients across adjacent elements. Key features of the surface NZT finite element space include its [math]-relative conformity and weak [math] conformity, allowing for stabilization without the use of artificial parameters. Under the assumption that the exact solution and the dual problem possess only [math] regularity, we establish optimal error estimates in the energy norm and provide, for the first time, a comprehensive analysis yielding optimal second-order convergence in the broken [math] norm. Numerical experiments are provided to support the theoretical results and indicate that the stabilization term might be unnecessary.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"16 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1707936","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1642-1665, August 2025.
Abstract. This paper presents a novel stabilized nonconforming finite element method for solving the surface biharmonic problem. The method extends the New-Zienkiewicz-type (NZT) element to polyhedral (approximated) surfaces by employing the Piola transform to establish the connection of vertex gradients across adjacent elements. Key features of the surface NZT finite element space include its [math]-relative conformity and weak [math] conformity, allowing for stabilization without the use of artificial parameters. Under the assumption that the exact solution and the dual problem possess only [math] regularity, we establish optimal error estimates in the energy norm and provide, for the first time, a comprehensive analysis yielding optimal second-order convergence in the broken [math] norm. Numerical experiments are provided to support the theoretical results and indicate that the stabilization term might be unnecessary.
表面双调和问题的稳定非协调有限元法
SIAM数值分析杂志,第63卷,第4期,1642-1665页,2025年8月。摘要。本文提出了一种求解曲面双调和问题的稳定非协调有限元新方法。该方法将New-Zienkiewicz-type (NZT)单元扩展到多面体(近似)表面,采用Piola变换建立相邻单元间顶点梯度的连接。地面NZT有限元空间的主要特征包括其相对一致性和弱一致性,允许在不使用人工参数的情况下进行稳定。在精确解和对偶问题只具有数学正则性的假设下,我们在能量范数中建立了最优误差估计,并首次提供了在破坏的数学范数中产生最优二阶收敛的综合分析。数值实验结果支持了理论结果,并表明稳定项可能是不必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信