UFPF: A Universal Feature Perception Framework for Microscopic Hyperspectral Images

IF 13.7
Geng Qin;Huan Liu;Wei Li;Xueyu Zhang;Yuxing Guo;Xiang-Gen Xia
{"title":"UFPF: A Universal Feature Perception Framework for Microscopic Hyperspectral Images","authors":"Geng Qin;Huan Liu;Wei Li;Xueyu Zhang;Yuxing Guo;Xiang-Gen Xia","doi":"10.1109/TIP.2025.3594151","DOIUrl":null,"url":null,"abstract":"In recent years, deep learning has shown immense promise in advancing medical hyperspectral imaging diagnostics at the microscopic level. Despite this progress, most existing research models remain constrained to single-task or single-scene applications, lacking robust collaborative interpretation of microscopic hyperspectral features and spatial information, thereby failing to fully explore the clinical value of hyperspectral data. In this paper, we propose a microscopic hyperspectral universal feature perception framework (UFPF), which extracts high-quality spatial-spectral features of hyperspectral data, providing a robust feature foundation for downstream tasks. Specifically, this innovative framework captures different sequential spatial nearest-neighbor relationships through a hierarchical corner-to-center mamba structure. It incorporates the concept of “progressive focus towards the center”, starting by emphasizing edge information and gradually refining attention from the edges towards the center. This approach effectively integrates richer spatial-spectral information, boosting the model’s feature extraction capability. On this basis, a dual-path spatial-spectral joint perception module is developed to achieve the complementarity of spatial and spectral information and fully explore the potential patterns in the data. In addition, a Mamba-attention Mix-alignment is designed to enhance the optimized alignment of deep semantic features. The experimental results on multiple datasets have shown that this framework significantly improves classification and segmentation performance, supporting the clinical application of medical hyperspectral data. The code is available at: <uri>https://github.com/Qugeryolo/UFPF</uri>","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"5513-5526"},"PeriodicalIF":13.7000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11114798/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, deep learning has shown immense promise in advancing medical hyperspectral imaging diagnostics at the microscopic level. Despite this progress, most existing research models remain constrained to single-task or single-scene applications, lacking robust collaborative interpretation of microscopic hyperspectral features and spatial information, thereby failing to fully explore the clinical value of hyperspectral data. In this paper, we propose a microscopic hyperspectral universal feature perception framework (UFPF), which extracts high-quality spatial-spectral features of hyperspectral data, providing a robust feature foundation for downstream tasks. Specifically, this innovative framework captures different sequential spatial nearest-neighbor relationships through a hierarchical corner-to-center mamba structure. It incorporates the concept of “progressive focus towards the center”, starting by emphasizing edge information and gradually refining attention from the edges towards the center. This approach effectively integrates richer spatial-spectral information, boosting the model’s feature extraction capability. On this basis, a dual-path spatial-spectral joint perception module is developed to achieve the complementarity of spatial and spectral information and fully explore the potential patterns in the data. In addition, a Mamba-attention Mix-alignment is designed to enhance the optimized alignment of deep semantic features. The experimental results on multiple datasets have shown that this framework significantly improves classification and segmentation performance, supporting the clinical application of medical hyperspectral data. The code is available at: https://github.com/Qugeryolo/UFPF
UFPF:用于显微高光谱图像的通用特征感知框架
近年来,深度学习在微观水平上推进医学高光谱成像诊断方面显示出巨大的希望。尽管取得了这些进展,但大多数现有的研究模型仍然局限于单任务或单场景应用,缺乏对微观高光谱特征和空间信息的强大协同解释,从而未能充分挖掘高光谱数据的临床价值。本文提出了一种微观高光谱通用特征感知框架(UFPF),该框架能够从高光谱数据中提取高质量的空间光谱特征,为后续任务提供强大的特征基础。具体来说,这个创新的框架通过分层的角到中心的曼巴结构捕获了不同的顺序空间近邻关系。它融合了“渐进式向中心聚焦”的概念,从强调边缘信息开始,逐渐从边缘向中心细化注意力。该方法有效地集成了丰富的空间光谱信息,提高了模型的特征提取能力。在此基础上,开发双路径空间-光谱联合感知模块,实现空间和光谱信息的互补,充分挖掘数据中的潜在规律。此外,设计了一种Mamba-attention - Mix-alignment,以增强深度语义特征的优化对齐。在多个数据集上的实验结果表明,该框架显著提高了分类和分割性能,为医疗高光谱数据的临床应用提供了支持。代码可从https://github.com/Qugeryolo/UFPF获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信