Bifurcation enhances temporal information encoding in the olfactory periphery.

PRX life Pub Date : 2024-11-01 Epub Date: 2024-11-12 DOI:10.1103/prxlife.2.043011
Kiri Choi, Will Rosenbluth, Isabella R Graf, Nirag Kadakia, Thierry Emonet
{"title":"Bifurcation enhances temporal information encoding in the olfactory periphery.","authors":"Kiri Choi, Will Rosenbluth, Isabella R Graf, Nirag Kadakia, Thierry Emonet","doi":"10.1103/prxlife.2.043011","DOIUrl":null,"url":null,"abstract":"<p><p>Living systems continually respond to signals from the surrounding environment. Survival requires that their responses adapt quickly and robustly to the changes in the environment. One particularly challenging example is olfactory navigation in turbulent plumes, where animals experience highly intermittent odor signals while odor concentration varies over many length- and timescales. Here, we show theoretically that <i>Drosophila</i> olfactory receptor neurons (ORNs) can exploit proximity to a bifurcation point of their firing dynamics to reliably extract information about the timing and intensity of fluctuations in the odor signal, which have been shown to be critical for odor-guided navigation. Close to the bifurcation, the system is intrinsically invariant to signal variance, and information about the timing, duration, and intensity of odor fluctuations is transferred efficiently. Importantly, we find that proximity to the bifurcation is maintained by mean adaptation alone and therefore does not require any additional feedback mechanism or fine-tuning. Using a biophysical model with calcium-based feedback, we demonstrate that this mechanism can explain the measured adaptation characteristics of <i>Drosophila</i> ORNs.</p>","PeriodicalId":520261,"journal":{"name":"PRX life","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320936/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxlife.2.043011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Living systems continually respond to signals from the surrounding environment. Survival requires that their responses adapt quickly and robustly to the changes in the environment. One particularly challenging example is olfactory navigation in turbulent plumes, where animals experience highly intermittent odor signals while odor concentration varies over many length- and timescales. Here, we show theoretically that Drosophila olfactory receptor neurons (ORNs) can exploit proximity to a bifurcation point of their firing dynamics to reliably extract information about the timing and intensity of fluctuations in the odor signal, which have been shown to be critical for odor-guided navigation. Close to the bifurcation, the system is intrinsically invariant to signal variance, and information about the timing, duration, and intensity of odor fluctuations is transferred efficiently. Importantly, we find that proximity to the bifurcation is maintained by mean adaptation alone and therefore does not require any additional feedback mechanism or fine-tuning. Using a biophysical model with calcium-based feedback, we demonstrate that this mechanism can explain the measured adaptation characteristics of Drosophila ORNs.

分岔增强了嗅觉外周的时间信息编码。
生命系统不断地对来自周围环境的信号作出反应。生存要求它们的反应迅速而有力地适应环境的变化。一个特别具有挑战性的例子是湍流羽流中的嗅觉导航,在湍流羽流中,动物体验到高度间歇性的气味信号,而气味浓度在许多长度和时间尺度上变化。在这里,我们从理论上证明了果蝇嗅觉受体神经元(orn)可以利用接近其放电动力学的分岔点来可靠地提取有关气味信号波动的时间和强度的信息,这些信息已被证明对气味引导导航至关重要。在分岔点附近,系统对信号的变化具有内在的不变性,并且可以有效地传递有关气味波动的时间、持续时间和强度的信息。重要的是,我们发现接近分岔是由平均适应单独维持的,因此不需要任何额外的反馈机制或微调。利用基于钙反馈的生物物理模型,我们证明了这一机制可以解释果蝇的适应特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信