Can Machine Learning Predict Metastatic Sites in Pancreatic Ductal Adenocarcinoma? A Radiomic Analysis.

F Spoto, R De Robertis, N Cardobi, A Garofano, L Messineo, E Lucin, M Milella, M D'Onofrio
{"title":"Can Machine Learning Predict Metastatic Sites in Pancreatic Ductal Adenocarcinoma? A Radiomic Analysis.","authors":"F Spoto, R De Robertis, N Cardobi, A Garofano, L Messineo, E Lucin, M Milella, M D'Onofrio","doi":"10.1007/s10278-025-01627-y","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) exhibits high metastatic potential, with distinct prognoses based on metastatic sites. Radiomics enables quantitative imaging analysis for predictive modeling. To evaluate the feasibility of radiomic models in predicting PDAC metastatic patterns, specifically distinguishing between hepatic and pulmonary metastases. This retrospective study included 115 PDAC patients with either liver (n = 94) or lung (n = 21) metastases. Radiomic features were extracted from pancreatic arterial and venous phase CT scans of primary tumors using PyRadiomics. Two radiologists independently segmented tumors for inter-reader reliability assessment. Features with ICC > 0.9 underwent LASSO regularization for feature selection. Class imbalance was addressed using SMOTE and class weighting. Model performance was evaluated using fivefold cross-validation and bootstrap resampling. The multivariate logistic regression model achieved an AUC-ROC of 0.831 (95% CI: 0.752-0.910). At the optimal threshold, sensitivity was 0.762 (95% CI: 0.659-0.865) and specificity was 0.787 (95% CI: 0.695-0.879). The negative predictive value for lung metastases was 0.810 (95% CI: 0.734-0.886). LargeDependenceEmphasis showed a trend toward significance (p = 0.0566) as a discriminative feature. Precision was 0.842, recall 0.762, and F1 score 0.800. Radiomic analysis of primary pancreatic tumors demonstrates potential for predicting hepatic versus pulmonary metastatic patterns. The high negative predictive value for lung metastases may support clinical decision-making. External validation is essential before clinical implementation. These findings from a single-center study require confirmation in larger, multicenter cohorts.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01627-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pancreatic ductal adenocarcinoma (PDAC) exhibits high metastatic potential, with distinct prognoses based on metastatic sites. Radiomics enables quantitative imaging analysis for predictive modeling. To evaluate the feasibility of radiomic models in predicting PDAC metastatic patterns, specifically distinguishing between hepatic and pulmonary metastases. This retrospective study included 115 PDAC patients with either liver (n = 94) or lung (n = 21) metastases. Radiomic features were extracted from pancreatic arterial and venous phase CT scans of primary tumors using PyRadiomics. Two radiologists independently segmented tumors for inter-reader reliability assessment. Features with ICC > 0.9 underwent LASSO regularization for feature selection. Class imbalance was addressed using SMOTE and class weighting. Model performance was evaluated using fivefold cross-validation and bootstrap resampling. The multivariate logistic regression model achieved an AUC-ROC of 0.831 (95% CI: 0.752-0.910). At the optimal threshold, sensitivity was 0.762 (95% CI: 0.659-0.865) and specificity was 0.787 (95% CI: 0.695-0.879). The negative predictive value for lung metastases was 0.810 (95% CI: 0.734-0.886). LargeDependenceEmphasis showed a trend toward significance (p = 0.0566) as a discriminative feature. Precision was 0.842, recall 0.762, and F1 score 0.800. Radiomic analysis of primary pancreatic tumors demonstrates potential for predicting hepatic versus pulmonary metastatic patterns. The high negative predictive value for lung metastases may support clinical decision-making. External validation is essential before clinical implementation. These findings from a single-center study require confirmation in larger, multicenter cohorts.

机器学习能预测胰腺导管腺癌的转移部位吗?A放射学分析。
胰腺导管腺癌(PDAC)具有高转移潜力,根据转移部位有不同的预后。放射组学为预测建模提供了定量成像分析。评估放射组学模型预测PDAC转移模式的可行性,特别是区分肝和肺转移。这项回顾性研究包括115例PDAC患者,其中94例为肝转移,21例为肺转移。利用PyRadiomics技术从原发性肿瘤的胰腺动脉和静脉期CT扫描中提取放射学特征。两名放射科医生独立分割肿瘤进行解读器间可靠性评估。ICC > 0.9的特征采用LASSO正则化进行特征选择。使用SMOTE和职业加权来解决职业不平衡问题。使用五倍交叉验证和自举重采样来评估模型性能。多因素logistic回归模型的AUC-ROC为0.831 (95% CI: 0.752 ~ 0.910)。在最佳阈值下,敏感性为0.762 (95% CI: 0.659-0.865),特异性为0.787 (95% CI: 0.695-0.879)。肺转移的阴性预测值为0.810 (95% CI: 0.734 ~ 0.886)。作为一种判别特征,“大依赖强调”呈显著性趋势(p = 0.0566)。精密度为0.842,召回率为0.762,F1得分为0.800。原发性胰腺肿瘤的放射组学分析显示了预测肝与肺转移模式的潜力。肺转移的高阴性预测值可能支持临床决策。在临床实施之前,外部验证是必不可少的。这些来自单中心研究的发现需要在更大的多中心队列中得到证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信