FIBOS: R and python packages for analyzing protein packing and structure.

IF 5.4
Herson H M Soares, João P R Romanelli, Patrick J Fleming, Carlos H da Silveira
{"title":"FIBOS: R and python packages for analyzing protein packing and structure.","authors":"Herson H M Soares, João P R Romanelli, Patrick J Fleming, Carlos H da Silveira","doi":"10.1093/bioinformatics/btaf434","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Advances in the prediction of the 3D structures of most known proteins through machine learning have achieved unprecedented accuracies. However, although these computed models are remarkably good, they still challenge accuracy at the atomic level. The Occluded Surface (OS) algorithm is widely used for atomic packing analysis. But it lacks implementations in high-level languages.</p><p><strong>Results: </strong>We introduce FIBOS, an R and Python package incorporating the OS methodology with enhancements. We show how FIBOS can be used to atomically compare experimental structures and AlphaFold predictions. Although the average packing was similar, AlphaFold models exhibited slightly greater variability, revealing a specific pattern of outliers.</p><p><strong>Availability and implementation: </strong>FIBOS can be installed locally as a PyPi Python or CRAN R package, and it is also available at https://github.com/insilico-unifei/fibos-R and https://github.com/insilico-unifei/fibos-py.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449057/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Advances in the prediction of the 3D structures of most known proteins through machine learning have achieved unprecedented accuracies. However, although these computed models are remarkably good, they still challenge accuracy at the atomic level. The Occluded Surface (OS) algorithm is widely used for atomic packing analysis. But it lacks implementations in high-level languages.

Results: We introduce FIBOS, an R and Python package incorporating the OS methodology with enhancements. We show how FIBOS can be used to atomically compare experimental structures and AlphaFold predictions. Although the average packing was similar, AlphaFold models exhibited slightly greater variability, revealing a specific pattern of outliers.

Availability and implementation: FIBOS can be installed locally as a PyPi Python or CRAN R package, and it is also available at https://github.com/insilico-unifei/fibos-R and https://github.com/insilico-unifei/fibos-py.

Abstract Image

FIBOS:用于分析蛋白质包装和结构的R和python包。
动机:通过机器学习预测大多数已知蛋白质的3D结构的进展已经达到了前所未有的精度。然而,尽管这些计算模型非常好,它们仍然在原子水平上挑战准确性。遮挡面(OS)算法被广泛应用于原子堆积分析。但是它缺乏高级语言的实现。结果:我们介绍了FIBOS,一个R和Python包,结合了OS方法和增强。我们展示了FIBOS如何用于原子比较实验结构和AlphaFold预测。虽然平均包装是相似的,但AlphaFold模型表现出略大的可变性,揭示了异常值的特定模式。可用性和实现:FIBOS可以作为PyPi Python或CRAN R包在本地安装,也可以在https://github.com/insilico-unifei/fibos-R和https://github.com/insilico-unifei/fibos-py上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信