Review of open-source software for developing heterogeneous data management systems for bioinformatics applications.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-07-18 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf168
Danilo Silva, Monika Moir, Marcel Dunaiski, Natalia Blanco, Fati Murtala-Ibrahim, Cheryl Baxter, Tulio de Oliveira, Joicymara S Xavier
{"title":"Review of open-source software for developing heterogeneous data management systems for bioinformatics applications.","authors":"Danilo Silva, Monika Moir, Marcel Dunaiski, Natalia Blanco, Fati Murtala-Ibrahim, Cheryl Baxter, Tulio de Oliveira, Joicymara S Xavier","doi":"10.1093/bioadv/vbaf168","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>In a world where data drive effective decision-making, bioinformatics and health science researchers often encounter difficulties managing data efficiently. In these fields, data are typically diverse in format and subject. Consequently, challenges in storing, tracking, and responsibly sharing valuable data have become increasingly evident over the past decades. To address the complexities, some approaches have leveraged standard strategies, such as using non-relational databases and data warehouses. However, these approaches often fall short in providing the flexibility and scalability required for complex projects. While the data lake paradigm has emerged to offer flexibility and handle large volumes of diverse data, it lacks robust data governance and organization. The data lakehouse is a new paradigm that combines the flexibility of a data lake with the governance of a data warehouse, offering a promising solution for managing heterogeneous data in bioinformatics. However, the lakehouse model remains unexplored in bioinformatics, with limited discussion in the current literature. In this study, we review strategies and tools for developing a data lakehouse infrastructure tailored to bioinformatics research. We summarize key concepts and assess available open-source and commercial solutions for managing data in bioinformatics.</p><p><strong>Availability and implementation: </strong>Not applicable.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf168"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12321290/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: In a world where data drive effective decision-making, bioinformatics and health science researchers often encounter difficulties managing data efficiently. In these fields, data are typically diverse in format and subject. Consequently, challenges in storing, tracking, and responsibly sharing valuable data have become increasingly evident over the past decades. To address the complexities, some approaches have leveraged standard strategies, such as using non-relational databases and data warehouses. However, these approaches often fall short in providing the flexibility and scalability required for complex projects. While the data lake paradigm has emerged to offer flexibility and handle large volumes of diverse data, it lacks robust data governance and organization. The data lakehouse is a new paradigm that combines the flexibility of a data lake with the governance of a data warehouse, offering a promising solution for managing heterogeneous data in bioinformatics. However, the lakehouse model remains unexplored in bioinformatics, with limited discussion in the current literature. In this study, we review strategies and tools for developing a data lakehouse infrastructure tailored to bioinformatics research. We summarize key concepts and assess available open-source and commercial solutions for managing data in bioinformatics.

Availability and implementation: Not applicable.

Abstract Image

Abstract Image

Abstract Image

生物信息学应用中异构数据管理系统的开源软件综述。
摘要:在数据驱动有效决策的世界中,生物信息学和健康科学研究人员经常遇到有效管理数据的困难。在这些领域中,数据的格式和主题通常是不同的。因此,在过去几十年中,存储、跟踪和负责任地共享有价值数据的挑战变得越来越明显。为了解决这种复杂性,一些方法利用了标准策略,例如使用非关系数据库和数据仓库。然而,这些方法在提供复杂项目所需的灵活性和可伸缩性方面往往存在不足。虽然数据湖范式的出现提供了灵活性并处理大量不同的数据,但它缺乏健壮的数据治理和组织。数据湖是一种新的范例,它将数据湖的灵活性与数据仓库的治理相结合,为管理生物信息学中的异构数据提供了一种有前途的解决方案。然而,湖屋模型在生物信息学中仍未被探索,目前文献中讨论有限。在本研究中,我们回顾了开发适合生物信息学研究的数据湖基础设施的策略和工具。我们总结了关键概念,并评估了可用的开源和商业解决方案,用于管理生物信息学中的数据。可用性和实现:不适用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信