{"title":"AI-Driven Integration of Deep Learning With Lung Imaging, Functional Analysis, and Blood Gas Metrics for Perioperative Hypoxemia Prediction.","authors":"Kecheng Huang, Chujun Wu, Rongpeng Pi, Jieyu Fang","doi":"10.2196/73995","DOIUrl":null,"url":null,"abstract":"<p><p>This viewpoint article explores the transformative role of artificial intelligence (AI) in predicting perioperative hypoxemia through the integration of deep learning with multimodal clinical data, including lung imaging, pulmonary function tests, and arterial blood gas (ABG) analysis. Perioperative hypoxemia, defined as arterial oxygen partial pressure <60 mmHg or oxygen saturation <90%, poses significant risks of delayed recovery and organ dysfunction. Traditional diagnostic methods such as radiological imaging and ABG analysis often lack integrated predictive accuracy. AI frameworks, particularly convolutional neural networks and hybrid models like TD-CNNLSTM-LungNet, demonstrate exceptional performance in detecting pulmonary inflammation and stratifying hypoxemia risk, achieving up to 96.57% accuracy in pneumonia subtype differentiation and an area under the curve of 0.96 for postoperative hypoxemia prediction. Multimodal AI systems, such as DeepLung-Predict, unify computed tomography scans, pulmonary function tests, and ABG parameters to enhance predictive precision, surpassing conventional methods by 22%. However, challenges persist, including dataset heterogeneity, model interpretability, and clinical workflow integration. Future directions emphasize multicenter validation, explainable AI frameworks, and pragmatic trials to ensure equitable and reliable deployment. This AI-driven approach not only optimizes resource allocation but also mitigates financial burdens on health care systems by enabling early interventions and reducing intensive care unit admission risks.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":" ","pages":"e73995"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12413569/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/73995","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This viewpoint article explores the transformative role of artificial intelligence (AI) in predicting perioperative hypoxemia through the integration of deep learning with multimodal clinical data, including lung imaging, pulmonary function tests, and arterial blood gas (ABG) analysis. Perioperative hypoxemia, defined as arterial oxygen partial pressure <60 mmHg or oxygen saturation <90%, poses significant risks of delayed recovery and organ dysfunction. Traditional diagnostic methods such as radiological imaging and ABG analysis often lack integrated predictive accuracy. AI frameworks, particularly convolutional neural networks and hybrid models like TD-CNNLSTM-LungNet, demonstrate exceptional performance in detecting pulmonary inflammation and stratifying hypoxemia risk, achieving up to 96.57% accuracy in pneumonia subtype differentiation and an area under the curve of 0.96 for postoperative hypoxemia prediction. Multimodal AI systems, such as DeepLung-Predict, unify computed tomography scans, pulmonary function tests, and ABG parameters to enhance predictive precision, surpassing conventional methods by 22%. However, challenges persist, including dataset heterogeneity, model interpretability, and clinical workflow integration. Future directions emphasize multicenter validation, explainable AI frameworks, and pragmatic trials to ensure equitable and reliable deployment. This AI-driven approach not only optimizes resource allocation but also mitigates financial burdens on health care systems by enabling early interventions and reducing intensive care unit admission risks.
期刊介绍:
JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.
Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.