Advances in STING Pathway Modulation for Cancer and Immunotherapy: A Comprehensive Review of Preclinical and Clinical Studies (2020-2024).

IF 2.1 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Rahaman Shaik, Komal Suthar, Chandrika Balija, Shifa Aleem, Fatima Sarwar Syeda, Sana Syeda, Shireen Begum
{"title":"Advances in STING Pathway Modulation for Cancer and Immunotherapy: A Comprehensive Review of Preclinical and Clinical Studies (2020-2024).","authors":"Rahaman Shaik, Komal Suthar, Chandrika Balija, Shifa Aleem, Fatima Sarwar Syeda, Sana Syeda, Shireen Begum","doi":"10.1177/10849785251362585","DOIUrl":null,"url":null,"abstract":"<p><p>In cancer immunotherapy, the stimulator of interferon genes (STING) pathway regulation has become a promising new approach, offering potential solutions to overcome limitations of current treatments. Recent advances have revealed intricate mechanisms of STING activation and regulation, leading to the development of novel small-molecule agonists with improved properties. Preclinical studies have shown that STING agonists can convert \"cold\" tumors to \"hot\" ones, enhancing immune cell infiltration and overcoming resistance to checkpoint inhibitors. Combination strategies, particularly with existing immunotherapies and conventional treatments, have demonstrated synergistic effects. Early clinical trials evaluating STING agonists, both as monotherapies and in combination with checkpoint inhibitors, have yielded promising results. More specific methods have been made possible by biomarker investigations, which have revealed light on mechanisms of action and possible response predictors. Indirect STING activation through ENPP1 inhibition has emerged as a novel strategy, offering more controlled antitumor immunity enhancement while minimizing systemic toxicity. Innovative delivery systems, including nanoparticles and exosome-based therapies, improve STING modulators' therapeutic index. While challenges remain, including precise regulation of STING activation and managing immune-related adverse events, rapid progress suggests that STING-targeted therapies could become cornerstone treatments. By harnessing innate immunity and enhancing its interplay with adaptive responses, STING modulators offer a potentially more accessible, cost-effective, and broadly applicable approach to cancer immunotherapy, addressing many current treatment limitations.</p>","PeriodicalId":55277,"journal":{"name":"Cancer Biotherapy and Radiopharmaceuticals","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biotherapy and Radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10849785251362585","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

In cancer immunotherapy, the stimulator of interferon genes (STING) pathway regulation has become a promising new approach, offering potential solutions to overcome limitations of current treatments. Recent advances have revealed intricate mechanisms of STING activation and regulation, leading to the development of novel small-molecule agonists with improved properties. Preclinical studies have shown that STING agonists can convert "cold" tumors to "hot" ones, enhancing immune cell infiltration and overcoming resistance to checkpoint inhibitors. Combination strategies, particularly with existing immunotherapies and conventional treatments, have demonstrated synergistic effects. Early clinical trials evaluating STING agonists, both as monotherapies and in combination with checkpoint inhibitors, have yielded promising results. More specific methods have been made possible by biomarker investigations, which have revealed light on mechanisms of action and possible response predictors. Indirect STING activation through ENPP1 inhibition has emerged as a novel strategy, offering more controlled antitumor immunity enhancement while minimizing systemic toxicity. Innovative delivery systems, including nanoparticles and exosome-based therapies, improve STING modulators' therapeutic index. While challenges remain, including precise regulation of STING activation and managing immune-related adverse events, rapid progress suggests that STING-targeted therapies could become cornerstone treatments. By harnessing innate immunity and enhancing its interplay with adaptive responses, STING modulators offer a potentially more accessible, cost-effective, and broadly applicable approach to cancer immunotherapy, addressing many current treatment limitations.

癌症和免疫治疗中STING通路调节的进展:临床前和临床研究的综合回顾(2020-2024)。
在癌症免疫治疗中,干扰素基因刺激因子(STING)通路调控已成为一种有前景的新方法,为克服现有治疗方法的局限性提供了潜在的解决方案。近年来的研究进展揭示了STING激活和调控的复杂机制,导致了性能改进的新型小分子激动剂的开发。临床前研究表明,STING激动剂可以将“冷”肿瘤转化为“热”肿瘤,增强免疫细胞浸润,克服对检查点抑制剂的耐药性。联合策略,特别是与现有的免疫疗法和常规疗法,已显示出协同效应。评估STING激动剂的早期临床试验,无论是单独治疗还是与检查点抑制剂联合使用,都取得了令人鼓舞的结果。通过生物标志物研究,更具体的方法已经成为可能,这些方法揭示了作用机制和可能的反应预测因子。通过抑制ENPP1间接激活STING已成为一种新的策略,提供更可控的抗肿瘤免疫增强,同时最大限度地减少全身毒性。创新的递送系统,包括纳米颗粒和基于外泌体的疗法,提高了STING调节剂的治疗指数。尽管挑战仍然存在,包括精确调节STING激活和管理免疫相关不良事件,但快速进展表明,针对STING的治疗可能成为基础治疗。通过利用先天免疫并增强其与适应性反应的相互作用,STING调节剂为癌症免疫治疗提供了一种潜在的更容易获得、更经济、更广泛适用的方法,解决了许多当前治疗的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
2.90%
发文量
87
审稿时长
3 months
期刊介绍: Cancer Biotherapy and Radiopharmaceuticals is the established peer-reviewed journal, with over 25 years of cutting-edge content on innovative therapeutic investigations to ultimately improve cancer management. It is the only journal with the specific focus of cancer biotherapy and is inclusive of monoclonal antibodies, cytokine therapy, cancer gene therapy, cell-based therapies, and other forms of immunotherapies. The Journal includes extensive reporting on advancements in radioimmunotherapy, and the use of radiopharmaceuticals and radiolabeled peptides for the development of new cancer treatments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信