{"title":"Air Core ARROW Waveguides Fabricated in a Membrane-Covered Trench.","authors":"Seth Walker, Holger Schmidt, Aaron R Hawkins","doi":"10.3390/photonics11060502","DOIUrl":null,"url":null,"abstract":"<p><p>We report the design, fabrication, and characterization of hollow-core anti-resonant reflecting optical waveguides (ARROWs) fabricated in a membrane-covered trench. These structures are built on silicon wafers using standard microfabrication techniques, including plasma etching, to form trenches. Four waveguide designs are demonstrated, which have different numbers of thin-film reflecting layers. We demonstrate that optical loss decreases with additional reflecting layers, with measured loss coefficients as low as 1 cm<sup>-1</sup>.</p>","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"11 6","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320944/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11060502","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We report the design, fabrication, and characterization of hollow-core anti-resonant reflecting optical waveguides (ARROWs) fabricated in a membrane-covered trench. These structures are built on silicon wafers using standard microfabrication techniques, including plasma etching, to form trenches. Four waveguide designs are demonstrated, which have different numbers of thin-film reflecting layers. We demonstrate that optical loss decreases with additional reflecting layers, with measured loss coefficients as low as 1 cm-1.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.