{"title":"Integrating Generative Pretrained Transformer and Genetic Algorithms for Efficient and Diverse Molecular Generation.","authors":"Chengcheng Xu, Chen Zeng, Xi Yang, Yingxu Liu, Xiangzhen Ning, Lidan Zheng, Yang Liu, Qing Fan, Chao Xu, Haichun Liu, Xian Wei, Yadong Chen, Yanmin Zhang, Rui Gu","doi":"10.1002/minf.70005","DOIUrl":null,"url":null,"abstract":"<p><p>In computer-aided drug design, molecular generation models play a crucial role in accelerating the drug development process. Current models mainly fall into two categories: deep learning models with high performance but poor interpretability and heuristic algorithms with better interpretability but limited performance. In this study, we introduce an innovative molecular generation model, the compound construction model (CCMol), which integrates the powerful generative capabilities of the generative pretrained transformer (GPT) and the efficient optimization mechanisms of genetic algorithms (GA) to achieve effective and innovative molecular structures. Specifically, our approach uses structure-based drug design comprising both ligand and protein primary structure-based aspects. CCMol integrates GPT for initial molecular generation and GA for iterative optimization of physicochemical and biological properties. The model's reliability was validated by generating molecules targeting three critical disease-related proteins (GLP1, WRN, and JAK2). The results indicate that CCMol is on average with current advanced models in multiple indicators and performs better than the baseline model in terms of structure diversity and drug-related properties indicators, demonstrating that CCMol exhibits outstanding performance in developing novel and effective candidate drug molecules, particularly suitable for expanding the chemical validity of candidate structures at the early stages of drug discovery.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"44 8","pages":"e202500094"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.70005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
In computer-aided drug design, molecular generation models play a crucial role in accelerating the drug development process. Current models mainly fall into two categories: deep learning models with high performance but poor interpretability and heuristic algorithms with better interpretability but limited performance. In this study, we introduce an innovative molecular generation model, the compound construction model (CCMol), which integrates the powerful generative capabilities of the generative pretrained transformer (GPT) and the efficient optimization mechanisms of genetic algorithms (GA) to achieve effective and innovative molecular structures. Specifically, our approach uses structure-based drug design comprising both ligand and protein primary structure-based aspects. CCMol integrates GPT for initial molecular generation and GA for iterative optimization of physicochemical and biological properties. The model's reliability was validated by generating molecules targeting three critical disease-related proteins (GLP1, WRN, and JAK2). The results indicate that CCMol is on average with current advanced models in multiple indicators and performs better than the baseline model in terms of structure diversity and drug-related properties indicators, demonstrating that CCMol exhibits outstanding performance in developing novel and effective candidate drug molecules, particularly suitable for expanding the chemical validity of candidate structures at the early stages of drug discovery.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.