{"title":"Multi-Criteria Decision Analysis for Managed Aquifer Recharge (MAR): A Flood-Responsive Approach in Milpa Alta, Mexico City","authors":"Omar S. Areu-Rangel, Amrie Singh, Rosanna Bonasia","doi":"10.1002/tqem.70153","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Milpa Alta, located southeast of Mexico City, is a key region for environmental sustainability due to its volcanic soil, biodiversity, and critical role in aquifer recharge, which supports the city's water supply. However, rapid urbanization has severely impacted the area, causing reduced vegetation cover, increased runoff, and diminished groundwater recharge, which intensify flooding, soil erosion, and water scarcity. This study aims to identify optimal sites for managed aquifer recharge (MAR) structures in Milpa Alta through a multi-criteria analysis incorporating criteria such as topography, land use, proximity to urban areas, and drainage networks. Uniquely, hydraulic simulations of flood scenarios were integrated into the analysis to improve the precision of site selection. Geographic information systems (GIS) were used to assess and combine these criteria, providing a spatial evaluation of suitability. Results indicate that the central and northern regions of Milpa Alta, particularly around San Francisco Tecoxpa and San Antonio Tecómitl, are most suitable for MAR implementation due to their permeable soils, gentle slopes, and proximity to agricultural lands and drainage networks. These MAR structures can enhance groundwater recharge and mitigate flood risks during extreme rainfall events, with the potential to capture up to 300,000 m<sup>3</sup> of surface runoff during a single high-intensity storm event. Despite its strengths, the study acknowledges limitations such as the absence of detailed water quality analyses and the need for sensitivity testing of the criteria weighting. This research provides an innovative approach to MAR site selection by integrating flood simulations, offering a replicable model for similar regions. Successful implementation of MAR in Milpa Alta requires addressing water quality concerns, engaging stakeholders, and ensuring compliance with regulatory frameworks. The findings emphasize MAR's potential to balance urbanization pressures with sustainable water management and flood mitigation strategies in Mexico City's rapidly developing areas.</p>\n </div>","PeriodicalId":35327,"journal":{"name":"Environmental Quality Management","volume":"35 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Quality Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tqem.70153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Milpa Alta, located southeast of Mexico City, is a key region for environmental sustainability due to its volcanic soil, biodiversity, and critical role in aquifer recharge, which supports the city's water supply. However, rapid urbanization has severely impacted the area, causing reduced vegetation cover, increased runoff, and diminished groundwater recharge, which intensify flooding, soil erosion, and water scarcity. This study aims to identify optimal sites for managed aquifer recharge (MAR) structures in Milpa Alta through a multi-criteria analysis incorporating criteria such as topography, land use, proximity to urban areas, and drainage networks. Uniquely, hydraulic simulations of flood scenarios were integrated into the analysis to improve the precision of site selection. Geographic information systems (GIS) were used to assess and combine these criteria, providing a spatial evaluation of suitability. Results indicate that the central and northern regions of Milpa Alta, particularly around San Francisco Tecoxpa and San Antonio Tecómitl, are most suitable for MAR implementation due to their permeable soils, gentle slopes, and proximity to agricultural lands and drainage networks. These MAR structures can enhance groundwater recharge and mitigate flood risks during extreme rainfall events, with the potential to capture up to 300,000 m3 of surface runoff during a single high-intensity storm event. Despite its strengths, the study acknowledges limitations such as the absence of detailed water quality analyses and the need for sensitivity testing of the criteria weighting. This research provides an innovative approach to MAR site selection by integrating flood simulations, offering a replicable model for similar regions. Successful implementation of MAR in Milpa Alta requires addressing water quality concerns, engaging stakeholders, and ensuring compliance with regulatory frameworks. The findings emphasize MAR's potential to balance urbanization pressures with sustainable water management and flood mitigation strategies in Mexico City's rapidly developing areas.
期刊介绍:
Four times a year, this practical journal shows you how to improve environmental performance and exceed voluntary standards such as ISO 14000. In each issue, you"ll find in-depth articles and the most current case studies of successful environmental quality improvement efforts -- and guidance on how you can apply these goals to your organization. Written by leading industry experts and practitioners, Environmental Quality Management brings you innovative practices in Performance Measurement...Life-Cycle Assessments...Safety Management... Environmental Auditing...ISO 14000 Standards and Certification..."Green Accounting"...Environmental Communication...Sustainable Development Issues...Environmental Benchmarking...Global Environmental Law and Regulation.