Joseph Razzell Hollis, Kelsey Moore, Marc Fries, Cindy Broderick, Yannick Buret, Rohit Bhartia, Teresa Fornaro, Trevor Graff, Kevin P. Hand, Keyron Hickman-Lewis, Ryan Jakubek, Carina Lee, Francis M. McCubbin, Richard V. Morris, Ashley Murphy, Sunanda Sharma, Caroline Smith, Andrew Steele, Kyle Uckert
{"title":"Mineralogical and Chemical Mapping of Martian Meteorite SaU 008 Using Deep UV Raman and Fluorescence Spectroscopy on Earth and Mars","authors":"Joseph Razzell Hollis, Kelsey Moore, Marc Fries, Cindy Broderick, Yannick Buret, Rohit Bhartia, Teresa Fornaro, Trevor Graff, Kevin P. Hand, Keyron Hickman-Lewis, Ryan Jakubek, Carina Lee, Francis M. McCubbin, Richard V. Morris, Ashley Murphy, Sunanda Sharma, Caroline Smith, Andrew Steele, Kyle Uckert","doi":"10.1029/2024JE008826","DOIUrl":null,"url":null,"abstract":"<p>The NASA Mars 2020 mission Perseverance rover carries a piece of Martian meteorite Sayh al Uhaymir (SaU) 008 as part of the calibration payload for the SHERLOC science instrument. We report SHERLOC observations of the SaU 008 flight piece over the first 1,000 sols of the mission and compare them to measurements done prior to launch, showing consistent detection of the same deep-ultraviolet (DUV) Raman and fluorescence signatures in the same locations. Co-located X-ray fluorescence (XRF) and DUV mapping of a reference SaU 008 piece on Earth confirm that the meteorite is comprised of an igneous mineral matrix consistent with shergottite, rich in olivine, maskelynite, and Fe-Mg pyroxenes detectable by SHERLOC. Terrestrial weathering features consist of fractures and vugs filled with Ca-carbonate. Fluorescence mapping reveals two major signatures: (a) broad-spectrum fluorescence present throughout the igneous matrix but strongest in weathering features, attributed to organic material, and (b) narrow-band 340 nm fluorescence spatially associated with ∼48 ppm cerium in <100 μm Ca-phosphate grains. Raman revealed organic material in both the igneous matrix and terrestrial carbonate in the form of macromolecular carbon (MMC) with defect and graphitic bands at ∼1,380 and ∼1,600 cm<sup>−1</sup> respectively. Raman band parameters suggest that MMC associated with terrestrial weathering is less thermally mature, most likely the result of chemical alteration after landing on Earth. This study serves as a demonstration of SHERLOC's capabilities when supported by co-located XRF data from PIXL and suggests that SHERLOC can detect Ce in phosphate minerals at concentrations as low as 4 ppm.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 8","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008826","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024JE008826","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The NASA Mars 2020 mission Perseverance rover carries a piece of Martian meteorite Sayh al Uhaymir (SaU) 008 as part of the calibration payload for the SHERLOC science instrument. We report SHERLOC observations of the SaU 008 flight piece over the first 1,000 sols of the mission and compare them to measurements done prior to launch, showing consistent detection of the same deep-ultraviolet (DUV) Raman and fluorescence signatures in the same locations. Co-located X-ray fluorescence (XRF) and DUV mapping of a reference SaU 008 piece on Earth confirm that the meteorite is comprised of an igneous mineral matrix consistent with shergottite, rich in olivine, maskelynite, and Fe-Mg pyroxenes detectable by SHERLOC. Terrestrial weathering features consist of fractures and vugs filled with Ca-carbonate. Fluorescence mapping reveals two major signatures: (a) broad-spectrum fluorescence present throughout the igneous matrix but strongest in weathering features, attributed to organic material, and (b) narrow-band 340 nm fluorescence spatially associated with ∼48 ppm cerium in <100 μm Ca-phosphate grains. Raman revealed organic material in both the igneous matrix and terrestrial carbonate in the form of macromolecular carbon (MMC) with defect and graphitic bands at ∼1,380 and ∼1,600 cm−1 respectively. Raman band parameters suggest that MMC associated with terrestrial weathering is less thermally mature, most likely the result of chemical alteration after landing on Earth. This study serves as a demonstration of SHERLOC's capabilities when supported by co-located XRF data from PIXL and suggests that SHERLOC can detect Ce in phosphate minerals at concentrations as low as 4 ppm.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.