The Management of E-Commerce Evaluation System Based on RBM and DBN Missing Rating Detection

IF 0.5 Q4 TELECOMMUNICATIONS
Shaobin Dong, Aihua Li, Decai Kong
{"title":"The Management of E-Commerce Evaluation System Based on RBM and DBN Missing Rating Detection","authors":"Shaobin Dong,&nbsp;Aihua Li,&nbsp;Decai Kong","doi":"10.1002/itl2.70086","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In e-commerce evaluation systems, missing evaluation data is a common problem. It can lead to fake reviews by malicious users, affecting users' decisions on products and services. Therefore, this study introduces Restricted Boltzmann Machines (RBM) and Deep Belief Networks (DBN) to fill in missing rating data for sparsely rated users. An iterative optimization ranking method is also used to improve user reputation values for identifying malicious users. The results show that on the Netflix dataset, the DBN model achieves an accuracy of 91.05% and an F1 score of 89.79%. On the Movielens dataset, the DBN model achieves an accuracy of 97.53% and an F1 score of 96.42%, which is a 13.08% and 12.73% decrease in accuracy and F1 score compared to the Support Vector Machine (SVM) model. On the Movielens-100 dataset, the DBN model achieves an accuracy of 86.11% and an F1 score of 84.27%, significantly outperforming the other two models. These results demonstrate the significant performance of the proposed method in data filling and malicious user detection in evaluation systems. It has important application value in the management of e-commerce evaluation systems.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 5","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In e-commerce evaluation systems, missing evaluation data is a common problem. It can lead to fake reviews by malicious users, affecting users' decisions on products and services. Therefore, this study introduces Restricted Boltzmann Machines (RBM) and Deep Belief Networks (DBN) to fill in missing rating data for sparsely rated users. An iterative optimization ranking method is also used to improve user reputation values for identifying malicious users. The results show that on the Netflix dataset, the DBN model achieves an accuracy of 91.05% and an F1 score of 89.79%. On the Movielens dataset, the DBN model achieves an accuracy of 97.53% and an F1 score of 96.42%, which is a 13.08% and 12.73% decrease in accuracy and F1 score compared to the Support Vector Machine (SVM) model. On the Movielens-100 dataset, the DBN model achieves an accuracy of 86.11% and an F1 score of 84.27%, significantly outperforming the other two models. These results demonstrate the significant performance of the proposed method in data filling and malicious user detection in evaluation systems. It has important application value in the management of e-commerce evaluation systems.

基于RBM和DBN缺失评级检测的电子商务评价系统管理
在电子商务评价系统中,评价数据缺失是一个普遍存在的问题。它可能导致恶意用户的虚假评论,影响用户对产品和服务的决定。因此,本研究引入受限玻尔兹曼机(RBM)和深度信念网络(DBN)来填补稀疏评分用户的缺失评分数据。采用迭代优化排序方法提高用户信誉值,识别恶意用户。结果表明,在Netflix数据集上,DBN模型的准确率为91.05%,F1得分为89.79%。在Movielens数据集上,DBN模型的准确率为97.53%,F1分数为96.42%,与支持向量机(SVM)模型相比,准确率和F1分数分别下降了13.08%和12.73%。在Movielens-100数据集上,DBN模型的准确率为86.11%,F1得分为84.27%,显著优于其他两种模型。这些结果证明了该方法在评估系统中的数据填充和恶意用户检测方面的显著性能。在电子商务评价系统管理中具有重要的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信