Semi-analytical method for thermal field analysis of multiple arbitrarily shaped inhomogeneities in heterogeneous geological media

IF 4.4 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Guanxiang Ding , Pu Li , Xiaowu Luo , Qinghua Zhou , Hao Zhu , Qiang Zhang , Yanmin Liu
{"title":"Semi-analytical method for thermal field analysis of multiple arbitrarily shaped inhomogeneities in heterogeneous geological media","authors":"Guanxiang Ding ,&nbsp;Pu Li ,&nbsp;Xiaowu Luo ,&nbsp;Qinghua Zhou ,&nbsp;Hao Zhu ,&nbsp;Qiang Zhang ,&nbsp;Yanmin Liu","doi":"10.1016/j.cageo.2025.106025","DOIUrl":null,"url":null,"abstract":"<div><div>Natural geological formations typically exhibit heterogeneous thermal properties due to the presence of multiple inhomogeneities, such as mineral inclusions, fractures, or pore clusters, which significantly influence subsurface heat transport. In this work, an effective semi-analytical approach is proposed to investigate the heterogeneous thermal field containing multiple inhomogeneities with arbitrary shapes and various conductivities. Temperature solutions for rectangular elements are constructed from integrated line element temperatures, from which temperature gradients and heat flux are analytically derived. The work features a unified formulation for both the interior and exterior thermal responses of inhomogeneities, avoiding separate treatment of field regions. By Combing the Numerical Equivalent Inclusion Method (NEIM) with two-dimensional Fast Fourier Transform (2D-FFT) algorithms, the proposed approach efficiently solves thermal fields involving both stiff and soft inhomogeneities in heterogeneous media. Furthermore, the method is applied to geostructures, analyzing the thermal distributions of multiple arbitrarily shaped inhomogeneities subjected to remote heat flux. The semi-analytical method demonstrates high accuracy, computational efficiency, and robustness, providing a valuable tool for geoscientific thermal studies.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"205 ","pages":"Article 106025"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009830042500175X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Natural geological formations typically exhibit heterogeneous thermal properties due to the presence of multiple inhomogeneities, such as mineral inclusions, fractures, or pore clusters, which significantly influence subsurface heat transport. In this work, an effective semi-analytical approach is proposed to investigate the heterogeneous thermal field containing multiple inhomogeneities with arbitrary shapes and various conductivities. Temperature solutions for rectangular elements are constructed from integrated line element temperatures, from which temperature gradients and heat flux are analytically derived. The work features a unified formulation for both the interior and exterior thermal responses of inhomogeneities, avoiding separate treatment of field regions. By Combing the Numerical Equivalent Inclusion Method (NEIM) with two-dimensional Fast Fourier Transform (2D-FFT) algorithms, the proposed approach efficiently solves thermal fields involving both stiff and soft inhomogeneities in heterogeneous media. Furthermore, the method is applied to geostructures, analyzing the thermal distributions of multiple arbitrarily shaped inhomogeneities subjected to remote heat flux. The semi-analytical method demonstrates high accuracy, computational efficiency, and robustness, providing a valuable tool for geoscientific thermal studies.
非均质地质介质中多个任意形状非均质热场分析的半解析方法
由于矿物包裹体、裂缝或孔隙团簇等多种不均匀性的存在,自然地质构造通常表现出非均匀的热性质,这些不均匀性会显著影响地下热传输。在这项工作中,提出了一种有效的半解析方法来研究具有任意形状和各种电导率的多种非均匀性的非均质热场。矩形单元的温度解由积分线元温度构造,并由此解析导出温度梯度和热流密度。这项工作的特点是对不均匀性的内部和外部热响应采用统一的公式,避免了对场区域的单独处理。该方法将数值等效包含法(NEIM)与二维快速傅立叶变换(2D-FFT)算法相结合,有效地求解了非均质介质中软硬两种非均匀性的热场。此外,将该方法应用于土工结构,分析了多个任意形状非均匀体在远端热通量作用下的热分布。半解析方法具有较高的精度、计算效率和鲁棒性,为地学热研究提供了一种有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信