{"title":"Piloting Copilot, Codex, and StarCoder2: Hot temperature, cold prompts, or black magic?","authors":"Jean-Baptiste Döderlein , Nguessan Hermann Kouadio , Mathieu Acher , Djamel Eddine Khelladi , Benoit Combemale","doi":"10.1016/j.jss.2025.112562","DOIUrl":null,"url":null,"abstract":"<div><div>Language models are promising solutions for tackling increasing complex problems. In software engineering, they recently gained attention in code assistants, which generate programs from a natural language task description (prompt). They have the potential to save time and effort but remain poorly understood, limiting their optimal use. In this article, we investigate the impact of input variations on two configurations of a language model, focusing on parameters such as task description, surrounding context, model creativity, and the number of generated solutions. We design specific operators to modify these inputs and apply them to three LLM-based code assistants (Copilot, Codex, StarCoder2) and two benchmarks representing algorithmic problems (HumanEval, LeetCode). Our study examines whether these variations significantly affect program quality and how these effects generalize across models.</div><div>Our results show that varying input parameters can greatly improve performance, achieving up to 79.27% success in one-shot generation compared to 22.44% for Codex and 31.1% for Copilot in default settings. Actioning this potential in practice is challenging due to the complex interplay in our study—the optimal settings for temperature, prompt, and number of generated solutions vary by problem.</div><div>Reproducing our study with StarCoder2 confirms these findings, indicating they are not model-specific. We also uncover surprising behaviors (e.g., fully removing the prompt can be effective), revealing model brittleness and areas for improvement.</div><div>Overall, this work opens opportunities to envision (automated) strategies for enhancing performance of language model-based code assistants, but also questions their reliability and robustness.</div><div><em>Editor’s note: Open Science material was validated by the Journal of Systems and Software Open Science Board</em>.</div></div>","PeriodicalId":51099,"journal":{"name":"Journal of Systems and Software","volume":"230 ","pages":"Article 112562"},"PeriodicalIF":4.1000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems and Software","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0164121225002316","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Language models are promising solutions for tackling increasing complex problems. In software engineering, they recently gained attention in code assistants, which generate programs from a natural language task description (prompt). They have the potential to save time and effort but remain poorly understood, limiting their optimal use. In this article, we investigate the impact of input variations on two configurations of a language model, focusing on parameters such as task description, surrounding context, model creativity, and the number of generated solutions. We design specific operators to modify these inputs and apply them to three LLM-based code assistants (Copilot, Codex, StarCoder2) and two benchmarks representing algorithmic problems (HumanEval, LeetCode). Our study examines whether these variations significantly affect program quality and how these effects generalize across models.
Our results show that varying input parameters can greatly improve performance, achieving up to 79.27% success in one-shot generation compared to 22.44% for Codex and 31.1% for Copilot in default settings. Actioning this potential in practice is challenging due to the complex interplay in our study—the optimal settings for temperature, prompt, and number of generated solutions vary by problem.
Reproducing our study with StarCoder2 confirms these findings, indicating they are not model-specific. We also uncover surprising behaviors (e.g., fully removing the prompt can be effective), revealing model brittleness and areas for improvement.
Overall, this work opens opportunities to envision (automated) strategies for enhancing performance of language model-based code assistants, but also questions their reliability and robustness.
Editor’s note: Open Science material was validated by the Journal of Systems and Software Open Science Board.
期刊介绍:
The Journal of Systems and Software publishes papers covering all aspects of software engineering and related hardware-software-systems issues. All articles should include a validation of the idea presented, e.g. through case studies, experiments, or systematic comparisons with other approaches already in practice. Topics of interest include, but are not limited to:
•Methods and tools for, and empirical studies on, software requirements, design, architecture, verification and validation, maintenance and evolution
•Agile, model-driven, service-oriented, open source and global software development
•Approaches for mobile, multiprocessing, real-time, distributed, cloud-based, dependable and virtualized systems
•Human factors and management concerns of software development
•Data management and big data issues of software systems
•Metrics and evaluation, data mining of software development resources
•Business and economic aspects of software development processes
The journal welcomes state-of-the-art surveys and reports of practical experience for all of these topics.