An effective multistage mouse model of esophageal carcinogenesis for preclinical and computational pathology applications

IF 7.7 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology
Yuxia Fu , Guoqing Zhang , Yue Liu , Lei Xu , Yuanyuan Hu , Liyan Xue , Huiqin Guo , Yan Fu , Yigang Cen , Xiao Li , Wei Jiang , Xiying Yu
{"title":"An effective multistage mouse model of esophageal carcinogenesis for preclinical and computational pathology applications","authors":"Yuxia Fu ,&nbsp;Guoqing Zhang ,&nbsp;Yue Liu ,&nbsp;Lei Xu ,&nbsp;Yuanyuan Hu ,&nbsp;Liyan Xue ,&nbsp;Huiqin Guo ,&nbsp;Yan Fu ,&nbsp;Yigang Cen ,&nbsp;Xiao Li ,&nbsp;Wei Jiang ,&nbsp;Xiying Yu","doi":"10.1016/j.neo.2025.101217","DOIUrl":null,"url":null,"abstract":"<div><div>The use of <em>c</em>arcinogen-<em>i</em>nduced <em>m</em>ultistage <em>c</em>arcinogenesis animal <em>m</em>odels of esophageal squamous cell carcinoma (CIMCM of ESCC) is limited by prolonged timelines, high toxicity, and excessive mutational burden. In this study, we report the establishment of an effective mouse CIMCM of ESCC by using 4-nitroquinoline-1-oxide (4NQO) as a carcinogen and sorafenib (SOR) as a tumor promoter. We show that SOR specifically activates the Raf-MEK-ERK signaling pathway in normal esophageal stratified squamous epithelium cells, thereby promoting tumor progression. This CIMCM of ESCC accurately recapitulates the multistage process of ESCC carcinogenesis from precancerous lesions to invasive carcinoma, with shortened time and high efficiency. Pathological, molecular, cellular and multiomic analyses show that the CIMCM of ESCC significantly reduces the tumor mutation burden to levels detected in human ESCC samples, while preserving key genetic driver mutations and abnormal transcriptomic/protein expression profiles. Notably, the CIMCM of ESCC demonstrates that the tissue microenvironment plays an important role in ESCC carcinogenesis, as the application of mechanical injury to the esophageal SSE of the CIMCM results in the inflammatory-related response, site-specific tumor formation and high tumor incidence. Since the CIMCM of ESCC provides valuable samples from different stages of tumor initiation and progression, the pathological whole slide images of the CIMCM of ESCC are applied to the computational pathology, which enables the detection, segmentation and annotation of the ESCC initiation and progression with pathologist-level accuracy. Taken together, this mouse CIMCM of ESCC provides a versatile platform for ESCC early diagnosis, basic and preclinical research and therapeutic strategy.</div></div>","PeriodicalId":18917,"journal":{"name":"Neoplasia","volume":"68 ","pages":"Article 101217"},"PeriodicalIF":7.7000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S147655862500096X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The use of carcinogen-induced multistage carcinogenesis animal models of esophageal squamous cell carcinoma (CIMCM of ESCC) is limited by prolonged timelines, high toxicity, and excessive mutational burden. In this study, we report the establishment of an effective mouse CIMCM of ESCC by using 4-nitroquinoline-1-oxide (4NQO) as a carcinogen and sorafenib (SOR) as a tumor promoter. We show that SOR specifically activates the Raf-MEK-ERK signaling pathway in normal esophageal stratified squamous epithelium cells, thereby promoting tumor progression. This CIMCM of ESCC accurately recapitulates the multistage process of ESCC carcinogenesis from precancerous lesions to invasive carcinoma, with shortened time and high efficiency. Pathological, molecular, cellular and multiomic analyses show that the CIMCM of ESCC significantly reduces the tumor mutation burden to levels detected in human ESCC samples, while preserving key genetic driver mutations and abnormal transcriptomic/protein expression profiles. Notably, the CIMCM of ESCC demonstrates that the tissue microenvironment plays an important role in ESCC carcinogenesis, as the application of mechanical injury to the esophageal SSE of the CIMCM results in the inflammatory-related response, site-specific tumor formation and high tumor incidence. Since the CIMCM of ESCC provides valuable samples from different stages of tumor initiation and progression, the pathological whole slide images of the CIMCM of ESCC are applied to the computational pathology, which enables the detection, segmentation and annotation of the ESCC initiation and progression with pathologist-level accuracy. Taken together, this mouse CIMCM of ESCC provides a versatile platform for ESCC early diagnosis, basic and preclinical research and therapeutic strategy.
用于临床前和计算病理学应用的有效的多阶段食管癌小鼠模型
食管鳞状细胞癌(CIMCM of ESCC)的多阶段癌变动物模型的使用受到时间长、毒性高和突变负担过重的限制。在这项研究中,我们报道了以4-硝基喹啉-1-氧化物(4NQO)为致癌物,索拉非尼(SOR)为肿瘤促进剂,建立了有效的ESCC小鼠CIMCM。我们发现SOR特异性激活正常食管分层鳞状上皮细胞中的Raf-MEK-ERK信号通路,从而促进肿瘤进展。该方法准确概括了ESCC从癌前病变到侵袭性癌的多阶段癌变过程,时间短、效率高。病理、分子、细胞和多组学分析表明,ESCC的CIMCM显著降低了肿瘤突变负担,同时保留了关键的遗传驱动突变和异常的转录组/蛋白表达谱。值得注意的是,ESCC的CIMCM表明组织微环境在ESCC的癌变中起着重要的作用,因为机械损伤CIMCM的食管SSE导致炎症相关反应,部位特异性肿瘤形成和高肿瘤发生率。由于ESCC的CIMCM提供了肿瘤起始和进展不同阶段的宝贵样本,因此将ESCC的病理全切片图像应用于计算病理学,使ESCC起始和进展的检测、分割和注释具有病理学水平的准确性。综上所述,该小鼠ESCC的CIMCM为ESCC的早期诊断、基础和临床前研究以及治疗策略提供了一个多功能平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neoplasia
Neoplasia 医学-肿瘤学
CiteScore
9.20
自引率
2.10%
发文量
82
审稿时长
26 days
期刊介绍: Neoplasia publishes the results of novel investigations in all areas of oncology research. The title Neoplasia was chosen to convey the journal’s breadth, which encompasses the traditional disciplines of cancer research as well as emerging fields and interdisciplinary investigations. Neoplasia is interested in studies describing new molecular and genetic findings relating to the neoplastic phenotype and in laboratory and clinical studies demonstrating creative applications of advances in the basic sciences to risk assessment, prognostic indications, detection, diagnosis, and treatment. In addition to regular Research Reports, Neoplasia also publishes Reviews and Meeting Reports. Neoplasia is committed to ensuring a thorough, fair, and rapid review and publication schedule to further its mission of serving both the scientific and clinical communities by disseminating important data and ideas in cancer research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信