Magnetic strategy in longitudinal and transverse thermoelectrics

IF 3.3 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Zihan Zhou , Haoran Zhao , Chenxi Shen , Weihan Chen , Zilong Liao , Tao Feng , Weishu Liu
{"title":"Magnetic strategy in longitudinal and transverse thermoelectrics","authors":"Zihan Zhou ,&nbsp;Haoran Zhao ,&nbsp;Chenxi Shen ,&nbsp;Weihan Chen ,&nbsp;Zilong Liao ,&nbsp;Tao Feng ,&nbsp;Weishu Liu","doi":"10.1016/j.solidstatesciences.2025.108039","DOIUrl":null,"url":null,"abstract":"<div><div>The magnetic degree of freedom or magnetism-driven mechanisms have emerged as a promising lever for optimizing thermoelectric performance. These mechanisms introduce new physical principles beyond traditional band engineering strategies. This review presents a systematic overview of recent advances in magnetically enhanced thermoelectric effects, highlighting both longitudinal and transverse transport regimes. In the longitudinal case, multiple magnetic mechanisms have been identified, including spin entropy, spin fluctuations, magnon and paramagnon drag, superparamagnetic dynamics, and magnetic-field-induced modulation of the Seebeck coefficient. Each of these mechanisms modifies carrier transport through distinct spin-related or field-activated processes. In the transverse regime, linear band dispersion and Berry curvature give rise to strong Nernst and anomalous Nernst responses under external magnetic fields and magnetic ordering state. These effects demonstrate the key role of magnetic degrees of freedom in enhancing thermoelectric performance. The corresponding mechanisms and representative material systems discussed herein offer valuable insights for the future optimization of thermoelectric materials through magnetic degrees of freedom.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"168 ","pages":"Article 108039"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255825002171","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The magnetic degree of freedom or magnetism-driven mechanisms have emerged as a promising lever for optimizing thermoelectric performance. These mechanisms introduce new physical principles beyond traditional band engineering strategies. This review presents a systematic overview of recent advances in magnetically enhanced thermoelectric effects, highlighting both longitudinal and transverse transport regimes. In the longitudinal case, multiple magnetic mechanisms have been identified, including spin entropy, spin fluctuations, magnon and paramagnon drag, superparamagnetic dynamics, and magnetic-field-induced modulation of the Seebeck coefficient. Each of these mechanisms modifies carrier transport through distinct spin-related or field-activated processes. In the transverse regime, linear band dispersion and Berry curvature give rise to strong Nernst and anomalous Nernst responses under external magnetic fields and magnetic ordering state. These effects demonstrate the key role of magnetic degrees of freedom in enhancing thermoelectric performance. The corresponding mechanisms and representative material systems discussed herein offer valuable insights for the future optimization of thermoelectric materials through magnetic degrees of freedom.

Abstract Image

纵向和横向热电中的磁策略
磁性自由度或磁性驱动机制已成为优化热电性能的有前途的杠杆。这些机制引入了超越传统波段工程策略的新物理原理。本文综述了磁增强热电效应的最新进展,重点介绍了纵向和横向输运机制。在纵向情况下,已经确定了多种磁机制,包括自旋熵、自旋涨落、磁振子和顺磁子阻力、超顺磁动力学以及磁场诱导的塞贝克系数调制。这些机制中的每一种都通过不同的自旋相关或场激活过程来改变载流子的输运。在外磁场和磁有序态下,线性频带色散和Berry曲率引起了强能带和反常能带响应。这些效应证明了磁性自由度在提高热电性能方面的关键作用。本文讨论了相应的机理和代表性材料体系,为未来通过磁自由度优化热电材料提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid State Sciences
Solid State Sciences 化学-无机化学与核化学
CiteScore
6.60
自引率
2.90%
发文量
214
审稿时长
27 days
期刊介绍: Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments. Key topics for stand-alone papers and special issues: -Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials -Physical properties, emphasizing but not limited to the electrical, magnetical and optical features -Materials related to information technology and energy and environmental sciences. The journal publishes feature articles from experts in the field upon invitation. Solid State Sciences - your gateway to energy-related materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信