Yingying Zhu , Dawei Ni , Zeyu Li , Zhebin Hao , Liang Wang , Wanmeng Mu
{"title":"NADPH regeneration for efficient biosynthesis of indigo by flavin-containing monooxygenase and formate dehydrogenase","authors":"Yingying Zhu , Dawei Ni , Zeyu Li , Zhebin Hao , Liang Wang , Wanmeng Mu","doi":"10.1016/j.enzmictec.2025.110731","DOIUrl":null,"url":null,"abstract":"<div><div>Indigo is an important blue pigment widely used in textile, food, and medicine industries. Biological production of indigo attracts increasing attention recently. Cell factory production of indigo encounters the problem of the toxicity of the precursor indole. Enzymatic production is the alternative biological approach, however, NADPH regeneration should be solved. In this study, flavin-containing monooxygenase from <em>Methylophaga aminisulfidivorans</em> was used for enzymatic production of indigo from indole and formate dehydrogenase from <em>Pseudomonas</em> sp. 101 was co-expressed for NADPH regeneration. Indigo production was enhanced by combination of molecular modification, promoter engineering, and translation initiation region engineering. Finally, 0.183 g/L of indigo was produced from 0.5 g/L of indole and 0.5 mM of sodium formate, with the conversion ratio of 32.5 %. This study demonstrates a feasible and effective strategy for enzymatic production of indigo.</div></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"191 ","pages":"Article 110731"},"PeriodicalIF":3.7000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022925001516","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Indigo is an important blue pigment widely used in textile, food, and medicine industries. Biological production of indigo attracts increasing attention recently. Cell factory production of indigo encounters the problem of the toxicity of the precursor indole. Enzymatic production is the alternative biological approach, however, NADPH regeneration should be solved. In this study, flavin-containing monooxygenase from Methylophaga aminisulfidivorans was used for enzymatic production of indigo from indole and formate dehydrogenase from Pseudomonas sp. 101 was co-expressed for NADPH regeneration. Indigo production was enhanced by combination of molecular modification, promoter engineering, and translation initiation region engineering. Finally, 0.183 g/L of indigo was produced from 0.5 g/L of indole and 0.5 mM of sodium formate, with the conversion ratio of 32.5 %. This study demonstrates a feasible and effective strategy for enzymatic production of indigo.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.