Aharishkumar Muswathi Babulal , Jelle Heijne , Peter Wezenbeek , Maarten Vlaswinkel , Frank Willems
{"title":"Data-Driven Misfire Detection in Hydrogen Gen-sets using a Production Exhaust Pressure Sensor","authors":"Aharishkumar Muswathi Babulal , Jelle Heijne , Peter Wezenbeek , Maarten Vlaswinkel , Frank Willems","doi":"10.1016/j.ifacol.2025.07.072","DOIUrl":null,"url":null,"abstract":"<div><div>With the growing demand for climate-neutral powertrains, hydrogen combustion gen-sets are emerging as cleaner alternatives to diesel gen-sets. However, spark-ignited hydrogen engines are prone to misfires, impacting performance and engine lifespan. This study presents a novel approach for detecting misfires and identifying the misfiring cylinder using exhaust pressure signals from the production sensor, enabling a cost-effective, real-time diagnostic solution. Unlike complex feature extraction methods, the proposed approach is optimized for constant-speed gen-sets, ensuring computational efficiency and seamless integration within an Engine Management System. The technique utilizes exhaust pressure and crank angle signals to compute a tracking error feature—the squared deviation between the actual pressure signal and a reference signal. A common reference signal is modeled using normalized normal combustion exhaust pressure data from the training set and can be used for different loads. The method is validated at a 6° crank angle resolution in the hardware across multiple misfiring patterns, including single, continuous, and multiple cylinder misfire events, and the results demonstrated excellent performance under steady-state conditions. Finally, validation on the research engine demonstrated the method’s feasibility for real-time implementation.</div></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"59 5","pages":"Pages 1-6"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896325004252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
With the growing demand for climate-neutral powertrains, hydrogen combustion gen-sets are emerging as cleaner alternatives to diesel gen-sets. However, spark-ignited hydrogen engines are prone to misfires, impacting performance and engine lifespan. This study presents a novel approach for detecting misfires and identifying the misfiring cylinder using exhaust pressure signals from the production sensor, enabling a cost-effective, real-time diagnostic solution. Unlike complex feature extraction methods, the proposed approach is optimized for constant-speed gen-sets, ensuring computational efficiency and seamless integration within an Engine Management System. The technique utilizes exhaust pressure and crank angle signals to compute a tracking error feature—the squared deviation between the actual pressure signal and a reference signal. A common reference signal is modeled using normalized normal combustion exhaust pressure data from the training set and can be used for different loads. The method is validated at a 6° crank angle resolution in the hardware across multiple misfiring patterns, including single, continuous, and multiple cylinder misfire events, and the results demonstrated excellent performance under steady-state conditions. Finally, validation on the research engine demonstrated the method’s feasibility for real-time implementation.
期刊介绍:
All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.