{"title":"A structural feature-based approach for comprehensive graph classification","authors":"Saiful Islam , Md. Nahid Hasan , Pitambar Khanra","doi":"10.1016/j.jocs.2025.102679","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing prevalence of graph-structured data across various domains has intensified greater interest in graph classification tasks. While numerous sophisticated graph learning methods have emerged, their complexity often hinders practical implementation. In this article, we address this challenge by proposing a method that constructs feature vectors based on fundamental graph structural properties. We demonstrate that these features, despite their simplicity, are powerful enough to capture the intrinsic characteristics of graphs within the same class. We explore the efficacy of our approach using three distinct machine learning methods, highlighting how our feature-based classification leverages the inherent structural similarities of graphs within the same class to achieve accurate classification. A key advantage of our approach is its simplicity, which makes it accessible and adaptable to a broad range of applications, including social network analysis, bioinformatics, and cybersecurity. Furthermore, we conduct extensive experiments to validate the performance of our method, showing that it not only reveals a competitive performance but in some cases surpasses the accuracy of more complex, state-of-the-art techniques. Our findings suggest that a focus on fundamental graph features can provide a robust and efficient alternative for graph classification, offering significant potential for both research and practical applications.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"91 ","pages":"Article 102679"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750325001565","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing prevalence of graph-structured data across various domains has intensified greater interest in graph classification tasks. While numerous sophisticated graph learning methods have emerged, their complexity often hinders practical implementation. In this article, we address this challenge by proposing a method that constructs feature vectors based on fundamental graph structural properties. We demonstrate that these features, despite their simplicity, are powerful enough to capture the intrinsic characteristics of graphs within the same class. We explore the efficacy of our approach using three distinct machine learning methods, highlighting how our feature-based classification leverages the inherent structural similarities of graphs within the same class to achieve accurate classification. A key advantage of our approach is its simplicity, which makes it accessible and adaptable to a broad range of applications, including social network analysis, bioinformatics, and cybersecurity. Furthermore, we conduct extensive experiments to validate the performance of our method, showing that it not only reveals a competitive performance but in some cases surpasses the accuracy of more complex, state-of-the-art techniques. Our findings suggest that a focus on fundamental graph features can provide a robust and efficient alternative for graph classification, offering significant potential for both research and practical applications.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).