{"title":"Two-wheel-driven Electric Superbike Powertrain Optimization","authors":"Adelmo Niccolai , Maurizio Clemente , Theo Hofman , Niccolò Baldanzini","doi":"10.1016/j.ifacol.2025.07.105","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose an optimization framework for the powertrain design of a two-wheel-driven electric superbike, minimizing energy consumption. Specifically, we jointly optimize the force distribution between the wheels with the gear ratio, and rear motor and battery sizing while explicitly considering vehicle dynamics and performance constraints. First, we present an energy consumption model of the vehicle, including a scalable model of the electric machine based on data from the industry, accounting for iron, copper, and mechanical losses. Then, we analyze the propulsive blending strategy to distribute the required power to the wheels while considering adherence limits. Finally, we demonstrate the effectiveness of our approach by analyzing the design of a superbike, based on regulatory driving cycles and a custom high-performance circuit by comparing the force distribution approaches. The results underline the significance of joint optimization of powertrain components and propulsive bias, achieving a reduction of up to 22.36% in energy consumption for the Sport high-performance driving cycle.</div></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"59 5","pages":"Pages 199-204"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896325004586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose an optimization framework for the powertrain design of a two-wheel-driven electric superbike, minimizing energy consumption. Specifically, we jointly optimize the force distribution between the wheels with the gear ratio, and rear motor and battery sizing while explicitly considering vehicle dynamics and performance constraints. First, we present an energy consumption model of the vehicle, including a scalable model of the electric machine based on data from the industry, accounting for iron, copper, and mechanical losses. Then, we analyze the propulsive blending strategy to distribute the required power to the wheels while considering adherence limits. Finally, we demonstrate the effectiveness of our approach by analyzing the design of a superbike, based on regulatory driving cycles and a custom high-performance circuit by comparing the force distribution approaches. The results underline the significance of joint optimization of powertrain components and propulsive bias, achieving a reduction of up to 22.36% in energy consumption for the Sport high-performance driving cycle.
期刊介绍:
All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.