{"title":"Anisotropic non-Fermi liquid and dynamical Planckian scaling of a quasi-kagome Kondo lattice system","authors":"Shin-ichi Kimura, Muhammad Frassetia Lubis, Hiroshi Watanabe, Yasuyuki Shimura, Toshiro Takabatake","doi":"10.1038/s41535-025-00797-w","DOIUrl":null,"url":null,"abstract":"<p>At the quantum critical point of correlated materials, a non-Fermi liquid state appears where electron correlations continuously develop to very low temperatures. The relaxation time of the interacted electrons, namely quasiparticles, is scaled with the Planckian time, <i><span>ℏ</span></i>/<i>k</i><sub>B</sub><i>T</i>. However, there is a debate over whether heavy-fermion systems can obey the Planckian time. In the optical conductivity spectra, the Drude response will appear as the scaling of <i><span>ℏ</span></i><i>ω</i>/<i>k</i><sub>B</sub><i>T</i> as the dynamical Planckian scaling (DPS). Here, we report the non-Fermi liquid behavior in the Drude response of a candidate for such materials, the quasi-kagome Kondo lattice CeRhSn. Even though the material shows a strong valence fluctuation, renormalized Drude responses observed at the photon energy below 100 meV are characterized by non-Fermi-liquid-like scattering rate 1/<i>τ</i>. The heavy carriers’ Drude response only for the Ce quasi-kagome plane obeyed DPS below 80 K, suggesting the anisotropic quantum criticality with the strong <i>c</i>-<i>f</i> hybridization.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"29 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00797-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
At the quantum critical point of correlated materials, a non-Fermi liquid state appears where electron correlations continuously develop to very low temperatures. The relaxation time of the interacted electrons, namely quasiparticles, is scaled with the Planckian time, ℏ/kBT. However, there is a debate over whether heavy-fermion systems can obey the Planckian time. In the optical conductivity spectra, the Drude response will appear as the scaling of ℏω/kBT as the dynamical Planckian scaling (DPS). Here, we report the non-Fermi liquid behavior in the Drude response of a candidate for such materials, the quasi-kagome Kondo lattice CeRhSn. Even though the material shows a strong valence fluctuation, renormalized Drude responses observed at the photon energy below 100 meV are characterized by non-Fermi-liquid-like scattering rate 1/τ. The heavy carriers’ Drude response only for the Ce quasi-kagome plane obeyed DPS below 80 K, suggesting the anisotropic quantum criticality with the strong c-f hybridization.
期刊介绍:
npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.